Microalgae - Harnessing Environmental and Nature Benefits – A Comprehensive Review


  • Godspower Oke Omokaro University of Benin, P.M.B 1155, Ugbowo, Benin City, Edo State, Nigeria https://orcid.org/0009-0002-7478-2327
  • Zipporah Simiyu Nafula People’s Friendship University of Russia, Mikluho Maklaya 6, Moscow, Russia




Microalgae, Soil Organism, Biofertilizer, Wastewater Treatment, Bioremediation


Microalgae, as photosynthetic microorganisms, possess significant potential in addressing environmental challenges and promoting sustainable practices. This review explores the wide-ranging applications of microalgae, emphasizing their pivotal roles in bioremediation, biofuel production, bioethanol generation, and biofertilizer development. Microalgae’s ability to thrive in various wastewater types, including municipal, agricultural, and industrial, signifies a sustainable approach to wastewater treatment. By efficiently removing nitrogen, phosphorus, carbon, and heavy metals, microalgae make substantial contributions to environmental sustainability. Furthermore, their integration into wastewater treatment processes not only reduces operational costs but also yields valuable biomass for various applications. Microalgae’s capacity to sequester carbon dioxide, coupled with their role in enhancing soil fertility, renders them invaluable tools in mitigating climate change and promoting sustainable agriculture. This review underscores the importance of ongoing research to fully harness microalgae’s potential, paving the way for a greener and more resilient future. It summarizes the effects of microalgae’s potential on agricultural soil and wastewater treatments, among other areas, by examining relevant works related to the topic. To achieve this, databases such as Google Scholar, Frontier in Microbiology, Microbial Cell Factory (MCF), Scopus, Web of Science, ScienceDirect, and Directory of Open Access Journals (DOAJ) were explored to identify studies on microalgae’s potential in various fields.


Download data is not yet available.


Ahmad, S. F., Mofijur, M., Parisa, T. A., Islam, N., Kusumo, F., & Inayat, A. (2022). Progress and challenges of contaminant removal from wastewater using microalgae biomass. Chemosphere, 286, 131656. https://doi.org/10.1016/j.chemosphere.2021.131656

Aketo, T., Hoshikawa, Y., Nojima, D., Yabu, Y., Maeda, Y., & Yoshino, T. (2020). Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Journal of Bioscience and Bioeng., 129(5), 565–572. https://doi.org/10.1016/j.jbiosc.2019.12.004

Alami, A.H., Alasad, S., Ali, M., & Alshamsi, M. (2021). Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci. Total Environ., 759, 143529. https://doi.org/10.1016/j.scitotenv.2020.143529

Al-Momani, F. A., & Örmeci, B. (2016). Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng., 95, 280–289. https://doi.org/10.1016/j.ecoleng.2016.06.038

Alvarez, A. L., Weyers S. L., Goemann H. M., Peyton B. M., & Gardner R. D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54, 102200. https://doi.org/10.1016/J.ALGAL.2021.102200

Amenorfenyo, D. K., Huang, X., Zhang, Y., Zeng, Q., Zhang, N., & Ren, J. (2019). Microalgae brewery wastewater treatment: Potentials, benefits and the challenges. Int. J. Environ. Res. Public Health, 16, 1910. https://doi.org/10.3390/ijerph16111910

Arora, N., Gulati, K., Patel, A., Pruthi, P. A., Poluri, K. M., & Pruthi, V. (2017). A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae. Algal Research, 24, 29-39. https://doi.org/10.1016/J.ALGAL.2017.03.012

Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70.

Ayele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J. Chem. 2021, 1–21. https://doi.org/10.1155/2021/7694157

Benemann, J., & Oswald, W. (1996). Final report to the US Department of Energy. Grant No. DEFG22-93PC93204, Pittsburgh Energy Technology Center, USA.

Bhuyar, P., Trejo, M., Dussadee, N., Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Sci. Technol., 84(10-11), 2686–2694. https://doi.org/10.2166/wst.2021.194

Bold, H. C., & Wynne, M. J. (1978). Introduction to the algae-structure and reproduction. Englewood Cliffs: Prentice-Hall Inc.

Cai, W., Zhao, Z., Li, D., Lei, Z., Zhang, Z., & Lee, D. J. (2019). Algae granulation for nutrients uptake and algae harvesting during wastewater treatment. Chemosphere, 214, 55-59. https://doi.org/10.1016/J.CHEMOSPHERE.2018.09.107

Carillo, P., Ciarmiello, L. F., Woodrow, P., Corrado, G., Chiaiese, P., & Rouphael, Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology, 9(9), 253-274. https://doi.org/10.3390/biology9090253

Chai, W. S., Tan, W. G., Munawaroh, H. S. H., Gupta, V. K., Ho, S. H., & Show, P. L. (2021). Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environ. Pollut., 269, 116236. https://doi.org/10.1016/j.envpol.2020.116236

Chen, C. Y., Hsieh, C., Lee, D. J., Chang, C. H., & Chang, J. S. (2016). Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour. Technol., 200, 500–505. https://doi.org/10.1016/j.biortech.2015.10.071

Cheng, F., & Luo, H. (2022). Evaluating the minimum fuel selling price of algae-derived biofuel from hydrothermal liquefaction. Bioresour. Technol. Rep., 17, 100901. https://doi.org/10.1016/j.biteb.2021.100901

Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol., 101(9), 3097–3105. https://doi.org/10.1016/j.biortech.2009.12.026

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol., 99(9), 3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

Craggs, R. J. (2000). Wastewater treatment by algal turf scrubbing. In 7th International Conference on Wetland Systems for Water Pollution Control. Lake Buena Vista: IWA Publishing.

Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 17, 145–155. https://doi.org/10.1007/s10311-018-0785-9

Daliry, S., Hallajisani, A., Mohammadi Roshandeh, J., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management, 3(2), 217–230.

Devi, M. P., & Mohan, S. V. (2012). CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresource Technology, 112, 116–123.

Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Mohammad, N., Sikder, A., & Sampathkumar, P. (2018). Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and Biomass Valorization, 9, 793-800. https://doi.org/10.1007/s12649-017-9873-5

Doma, H. S., Abdo, S. M., Mahmoud, R. H., Enin, S. A. El., & Diwani, G. El. (2016). Production and characterization of biodiesel from microalgae cultivated in municipal wastewater treatment plant. Res. J. Pharm. Biol. Chem. Sci., 7(2), 1912–1919.

Ellis, J. T., Hengge, N. N., Sims, R. C., & Miller, C. D. (2012). Acetone, butanol, and ethanol production from wastewater algae. Bioresour. Technol., 111, 491–495. https://doi.org/10.1016/j.biortech.2012.02.002

Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S., & Camp, J. (2012). Improvement of lipid production in the marine strains Heterosigma akashiwo and Alexandrium minutum utilizing abiotic parameters. Journal of Industrial Microbiology and Biotechnology, 39(1), 207–216.

Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051-1061. https://doi.org/10.1007/s10811-015-0625-2

Gardner-Dale, D. A., Bradley, I. M., & Guest, J. S. (2017). Influence of solids residence time and carbon storage on nitrogen and phosphorus recovery by microalgae across diel cycles. Water Research, 121, 231–239.

Gibbs, H. K., & Salmon, J. M. (2015). Mapping the world’s degraded lands. Applied Geography, 57, 12-21. https://doi.org/10.1016/J.APGEOG.2014.11.024

Goswami, R. K., Mehariya, S., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater. J. Water Process Eng., 40, 101747. https://doi.org/10.1016/j.jwpe.2020.101747

Gouveia, L., & Oliveira, C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36, 269-274. https://doi.org/10.1007/s10295-008-0495-6

Grady, C. P. L., Daigger, G. T., Love, N. G., & Filipe, C. D. M. (2011). Biological wastewater treatment. Florida: CRC Press.

Grobbelaar, J. U. (2004). Algal nutrition. In A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 97–115. Oxford: Blackwell.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54, 621–663.

Hu, Q., Zhang, C. W., & Sommerfeld, M. (2006). Biodiesel from algae: lessons learned over the past 60 years and future perspectives. Annual Meeting of the Phycological Society of America, 0–41. (Abstract)

Ito, T., Tanaka, M., Shinkawa, H., Nakada, T., Ano, Y., Kurano, N., Soga, T., & Tomita, M. (2012). Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics.

Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6, 4607–4638. https://doi.org/10.3390/en6094607

Keasling, J., Martin, H. G., Lee, T. S., Mukhopadhyay, A., Singer, S. W., & Sundstrom, E. (2021). Microbial production of advanced biofuels. Nature Reviews Microbiology, 19(11), 701–715.

Kim, Z. H., Park, H., & Lee, C. G. (2016). Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. Journal of Microbiology and Biotechnology, 26, 1098–1102.

Kim, Z. H., Park, H., Lee, J., Kim, P., Cho, Y., Jung, I., & Lee, C. G. (2018). Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. Journal of Applied Phycology. https://doi.org/10.1007/s10811-018-1388-3

Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae–a promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf., 113, 329–352. https://doi.org/10.1016/j.ecoenv.2014.12.019

Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnol. Prog., 24, 0–820. https://doi.org/10.1021/bp070371k

Lima, S., Villanova, V., Grisafi, F., Caputo, G., Brucato, A., & Scargiali, F. (2020). Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. J. Water Process Eng., 38, 101647. https://doi.org/10.1016/j.jwpe.2020.101647

Liu, X. Y., & Hong, Y. (2021). Microalgae-based wastewater treatment and recovery with biomass and value-added products: A brief review. Curr. Pollut. Rep., 7, 227–245. https://doi.org/10.1007/s40726-021-00184-6

Lorentz, J. F., Calijuri, M. L., Assemany, P. P., Alves, W. S., & Pereira, O. G. (2020). Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. Journal of Cleaner Production, 276, 124130. https://doi.org/10.1016/J.JCLEPRO.2020.124130

MacDougall, K. M., McNichol, J., McGinn, P. J., O’Leary, S. J. B., & Melanson, J. E. (2011). Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography–high-resolution mass spectrometry. Anal. Bioanal. Chem., 401, 2609–2616. https://doi.org/10.1007/s00216-011-5376-6

Mahmoud, S. A., Abd El-Aty, A. M., Kandil, H., & Siam, H. S. (2019). Influence of different algal species application on growth of spinach plant (Spinacia oleracea L.) and their role in phytoremediation of heavy metals from polluted soil. Plant Archives, 19, 2275-2281.

Maia, J. L. D., Cardoso, J. S., Mastrantonio, D. J. D. S., Bierhals, C. K., Moreira, J. B., & Costa, J. A. V., (2020). Microalgae starch: A promising raw material for bioethanol production. Int. J. Biol. Macromol., 165(2), 2739–2749. https://doi.org/10.1016/j.ijbiomac.2020.10.159

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14, 217–232.

Mezzari, M. P., Prandini, J. M., Deon Kich, J., & Busi da Silva, M. L. (2017). Elimination of antibiotic multi-resistant Salmonella typhimurium from swine wastewater by microalgae-induced antibacterial mechanisms. Journal of Bioremediation and Biodegradation, 08(01). https://doi.org/10.4172/2155-6199.1000379

Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O. N., & Das, P.,(2017). Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech, 7(2), 99. https://doi.org/10.1007/s13205-017-0727-4

Morales-Sánchez, D., Martinez-Rodriguez, O. A., & Martinez, A. (2017). Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. Journal of Chemical Technology and Biotechnology, 92, 925–936.

Munoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants. Water Res., 40, 2799–2815.

Naselli-Flores, L., & Padisák, J. (2023). Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia, 850(12-13), 2691-2706.

Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868-1888.

Novoveska, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86–94.

Onay, M. (2018). Bioethanol production from Nannochloropsis gaditana in municipal wastewater. Energy Procedia, 153, 253–257. https://doi.org/10.1016/j.egypro.2018.10.032

Onen Cinar, S., Chong, Z. K., Kucuker, M. A., Wieczorek, N., Cengiz, U., & Kuchta, K. (2020). Bioplastic production from microalgae: a review. International Journal of Environmental Research and Public Health, 17, 3842.

Özer Uyar, G. E., & Mısmıl, N. (2022). Symbiotic association of microalgae and plants in a deep-water culture system. PeerJ, 10, e14536. https://doi.org/10.7717/peerj.14536

Ozkurt, I. (2009). Qualifying safflower and algae for energy. Energy Education Science and Technology, 23, 145–151.

Pancha, I., Chokshi, K., & Mishra, S. (2019). Industrial wastewater-based microalgal biorefinery: A dual strategy to remediate waste and produce microalgal bioproducts. In S. Gupta and F. Bux (Eds.), Application of microalgae in wastewater treatment, 173–193. Cham: Springer.

Park, H., Jung, D., Lee, J., Kim, P., Cho, Y., Jung, I., & Lee, C. G. (2018). Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. Journal of Applied Phycology. https://doi.org/10.1007/s10811-018-1388-3

Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research, 20(8), 5096-5105. https://doi.org/10.1007/s11356-013-1791-x

Pradana, Y. S., Sudibyo, H., Suyono, E. A., Indarto, & Budiman, A. (2017). Oil algae extraction of selected microalgae species grown in monoculture and mixed cultures for biodiesel production. Energy Procedia, 105, 277-282. https://doi.org/10.1016/J.EGYPRO.2017.03.314

Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., & Babu, S. (2016). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23, 6608-6620. https://doi.org/10.1007/s11356-015-5884-6

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

Srimongkol, P., Thongchul, N., Phunpruch, S., & Karnchanatat, A. (2019a). Ability of marine cyanobacterium Synechococcus sp. VDW to remove ammonium from brackish aquaculture wastewater. Agric. Water Manag., 212, 155–161. https://doi.org/10.1016/j.agwat.2018.09.006

Srimongkol, P., Thongchul, N., Phunpruch, S., & Karnchanatat, A. (2019b). Optimization of Synechococcus sp. VDW cultivation with artificially prepared shrimp wastewater for ammonium removal and its potential for use as a biofuel feedstock. J. Oleo Sci., 68, 233–243. https://doi.org/10.5650/jos.ess18203

Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., & Rintala, J. A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J. Appl. Phycol., 29(6), 2845–2856. https://doi.org/10.1007/s10811-017-1175-6

Tinpranee, N., Incharoensakdi, A., & Phunpruch, S. (2018). Screening cyanobacteria from marine coastal waters of Thailand for biohydrogen production. J. Appl. Phycol., 30, 3471–3481. https://doi.org/10.1007/s10811-018-1490-6

Udaiyappan, A. F. M., Hasan, H. A., Takriff, M. S., & Abdullah, S. R. S. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J. Water Process Eng., 20, 8–21. https://doi.org/10.1016/j.jwpe.2017.09.006

US Department of Energy. (2014). Multi-Year Program Plan. Retrieved from http://www.energy.gov/sites/prod/files/2014/07/f17/mypp_july_2014.pdf

Vaishampayan, A., Sinha, R. P., Häder, D.-P., Dey, T., Gupta, A. K., & Bhan, U. (2001). Cyanobacterial biofertilizers in rice agriculture. Bot. Rev., 67, 453–516. https://doi.org/10.1007/BF02857893

Vu, C. H. T., Lee, H. G., Chang, Y. K., & Oh, H. M. (2018). Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 36(2), 380-396. https://doi.org/10.1016/J.BIOTECHADV.2017.12.018

Wang, S., Mukhambet, Y., Esakkimuthu, S., & Abomohra, A. (2022). Integrated microalgal biorefinery–Routes, energy, economic and environmental perspectives. J. Clean. Prod., 131245. https://doi.org/10.1016/j.jclepro.2022.131245

Wu, J. Y., Lay, C. H., Chen, C. C., & Wu, S. Y. (2017). Lipid accumulating microalgae cultivation in textile wastewater: Environmental parameters optimization. J. Taiwan Inst. Chem. Eng., 79, 1–6. https://doi.org/10.1016/j.jtice.2017.02.017

You, X., Yang, L., Zhou, X., & Zhang, Y. (2022). Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environ. Res., 112860. https://doi.org/10.1016/j.envres.2022.112860

Zhou, W., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Symbiosis of aerobic denitrifying bacteria and Chlorella vulgaris C111 improves the growth and photosynthetic efficiency of the alga. Water Res., 45(3), 913–920. https://doi.org/10.1016/j.watres.2010.10.015

Zhu, L., Li, Z., & Ketola, T. (2011). Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecological Engineering, 37, 1460–1466.




How to Cite

Omokaro, G. O., & Nafula, Z. S. (2023). Microalgae - Harnessing Environmental and Nature Benefits – A Comprehensive Review. American Journal of Agricultural Science, Engineering, and Technology, 7(3), 47–56. https://doi.org/10.54536/ajaset.v7i3.2232