Morpho-molecular Characterization of Maize Inbred Lines Accelerating Parental Selection for Hybridization

Authors

  • M A Madobe
  • M S Raihan
  • M Hasan
  • M S Biswas

DOI:

https://doi.org/10.54536/ajaset.v5i2.110

Keywords:

Maize, Inbred lines, Population Structure, SSR markers, Genetic diversity

Abstract

Characterization of genetic diversity is the foundation step for crop improvement, which provides a basis for analyzing combining ability and heterosis of inbred genotypes during a hybridization program. An investigation was carried out at the field laboratory of the Genetics and Plant Breeding department in Bangabandhu Sheikh Mujibur Rahman Agricultural University, to elucidate the genetic architecture by evaluating 12 morphological and 4 molecular (SSR) markers within 52 diverse S1 genotypes, and to assess the relationship of molecular and morphological GD. An almost equal amount of PCV and GCV coupled with high heritability and genetic advance for the traits cob weight (gm), NKPC, and NKPR lead to the selection of promising genotypes based on these characters. Correlation coefficient and scatter plot matrix established a positive and strong relationship of KL (mm), KW (mm), and KT (mm) with 100 kernel weight (gm) suggesting the importance of kernel morphology. Mahalanobis D2 statistics revealed the highest inter-cluster distance between I and II. The percentages of molecular variance within the population and among the population were 76% and 14 %, respectively. The optimum K-value was 5. Heatmap relying on molecular GD exposed MMIL-28, MMIL-54, and MMIL-96 as the most diverse lines. SHE analysis hypothesized the increase of richness and diversity over time. Less correlation between the divergence generated from morphological traits and molecular markers suggested that the morphological variation may be determined by environmental factors and also by genetic factors. A strategy for the effective selection of predicting parental lines for a future hybridization program was developed.

Downloads

Download data is not yet available.

Author Biographies

M A Madobe

Department of Genetics and Plant Breeding,
Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Gazipur, Bangladesh

M S Raihan

Department of Genetics and Plant Breeding,
Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Gazipur, Bangladesh

M Hasan

Department of Genetics and Plant Breeding,
Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Gazipur, Bangladesh

M S Biswas

Department of Horticulture,
Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Gazipur, Dhaka, Bangladesh

References

Abebe, T., Tulu, L., Tesfu, K., & Gebreselassie, W. (2020). Genetic Variations in CIMMYT and Ethiopian Maize (Zea mays L.) Inbred Lines as Determined by Microsatellite Markers. Ethiopian Journal of Agricultural Science, 30(2), 31–53.

Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic Diversity and Population Structure of Early-Maturing Tropical Maize Inbred Lines Using SNP Markers. PLoS ONE, 14(4), 1–13. https://doi.org/10.1371/journal.pone.0214810

Al-Amin, M., Azad, M. A. K., Shovon, S. R., & Haque, M. F. (2019). Genetic Variability and Character Association in Maize (Zea mays L.) Inbred Lines. Turkish Journal of Agriculture - Food Science and Technology, 7(8), 1125. https://doi.org/10.24925/turjaf.v7i8.1125-1131.2306

Ali, F., Ahsan, M., Ali, Q., & Kanwal, N. (2017). Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits Under Drought Stress. Frontiers in Plant Science, 8(August), 1–11. https://doi.org/10.3389/fpls.2017.01397

Avendaño-Arrazate, C. H., Cadena-Iñiguez, J., Arévalo-Galarza, M. L., Cisneros-Solano, V. M., Aguirre-Medina, J. F., Moreno-Pérez, E. D. C., ... & Ramírez-Vallejo, P. (2012). Genetic Variation of an Infraspecific Chayote Complex Evaluated by Isoenzimatic Systems. Pesquisa Agropecuária Brasileira, 47(2), 244-252. https://doi.org/10.1590/S0100-204X2012000200013

Ayodeji, A., & Comfort, A. A. (2019). Genetic Variability, Heritability and Genetic Advance in Shrunken-2 Super-Sweet Corn (Zea mays L. saccharata) Populations. Journal of Plant Breeding and Crop Science, 11(4), 100–105. https://doi.org/10.5897/jpbcs2018.0799

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research, 44(W1), W147–W153. https://doi.org/10.1093/nar/gkw419

Bittman S. and Kowalenko C.G. (2004). Advanced Silage Corn Management: A Production Guide for Coastal British Columbia and the Pacific Northwest.

Buzas, M. A., & Hayek, L.-A. C. (2005). On Richness and Evenness Within and Between Communities. Paleobiology, 31(2), 199-220. https://doi.org/10.1666/0094-8373(2005)031[0199:oraewa]2.0.co;2

Carena, M. J., Hallauer, A. R., & Miranda Filho, J. B. (2010). Quantitative Genetics in Maize Breeding. In Quantitative Genetics in Maize Breeding. https://doi.org/10.1007/978-1-4419-0766-0

Chandel, U., & Guleria, S. K. (2019). Genetic Diversity Studies in Maize (Zea Mays L.) Inbred Lines. International Journal of Biology, Pharmacy and Allied Sciences, 8(3), 570–575. https://doi.org/10.31032/ijbpas/2019/8.3.4668

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant Salt-tolerance Mechanisms. Trends in Plant Science, 19(6), 371–379. https://doi.org/10.1016/j.tplants.2014.02.001

Dewey, D. R., & Lu, K. H. (1959). A Correlation and Pathâ€Coefficient Analysis of Components of Crested Wheatgrass Seed Production. Agronomy Journal, 51(9), 515–518. https://doi.org/10.2134/agronj1959.00021962005100090002x

Diederichsen, A. (2009). Duplication Assessments in Nordic Avena Sativa Accessions at The Canadian National Genebank. Genetic Resources and Crop Evolution, 56(4), 587-597. https://doi.org/10.1007/s10722-008-9388-9

Earl, D.A., vonHoldt, B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4, 359–361 (2012). https://doi.org/10.1007/s12686-011-9548-7

Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred from Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131(2), 479–491. https://doi.org/10.3354/meps198283

Ferdoush, A., Haque, M., Rashid, M., & Bari, M. (2017). Variability and Traits Association in Maize (Zea mays L.) For Yield and Yield Associated Characters. Journal of the Bangladesh Agricultural University, 15(2), 193–198. https://doi.org/10.3329/jbau.v15i2.35062

Ferrari, C. D. S., Valente, L. L., Brod, F. C. A., Tagliari, C., Sant’Anna, E. S., & Arisi, A. C. M. (2007). Evaluation of Polymerase Chain Reaction and DNA Isolation Protocols for Detection Of Genetically Modified Soybean. International Journal of Food Science & Technology, 42(10), 1249–1255. https://doi.org/10.1111/j.1365-2621.2006.01405.x

Ghaderi, A., Shishegar, M., Rezai, A., and Ehdaie, B. (1979). Multivariate Analysis of Genetic Diversity for Yield and Its Components in Mung Bean. Journal-American Society for Horticultural Science (USA), 104(6), 106–109.

Goodman M.M., (1990) Genetic and Germplasm Stocks Worth Conserving. J. Hered. 81, 11-16.

Goodman M.M., (1994) Maize. In N.W. Simmonds (Ed.), Evolution of crop plants. Longman Group Ltd. Essex, England, pp. 192-202.

Gupta, P. K., & Varshney, R. K. (2000). The Development and Use of Microsatellite Markers for Genetic Analysis and Plant Breeding with Emphasis on Bread Wheat. Euphytica, 113(3), 163-185. https://doi.org/10.1023/A:1003910819967.

Hallauer, A. R. (1987). Maize. In Fehr WR (Ed) Principles of Cultivar Development, Macmillan, (Newyork), 249–294.

Haydar, F. M. A., Paul, N. K., & Khaleque, M. A. (2015). D2 Statistical Analysis of Yield Contributing Traits in Maize (Zea mays L.) Inbreds. Bangladesh Journal of Botany, 44(4), 629–634. https://doi.org/10.3329/bjb.v44i4.38634

Jatto, M. (2015). Correlation Among Yield and Yield Components in Maize (Zea mays L.). International Journal of Advanced Research, 3(10), 413–416.

Jilo, Tadesse, Leta, T., Techale, B., & Lemi, B. (2018). Genetic Variability, Heritability and Genetic Advance of Maize (Zea mays L.) Inbred Lines for Yield and Yield Related Traits In Southwestern Ethiopia. Journal of Plant Breeding and Crop Science, 10(10), 281–289. https://doi.org/10.5897/jpbcs2018.0742

Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of Genetic and Environmental Variability in Soybeans. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x

Kumar, A., Singh, P., Rai, N., Bhaskar, G., & Datta, D. (2014). Genetic Diversity of French Bean (Phaseolus vulgaris L.) Genotypes on the Basis of Morphological Traits and Molecular Markers. Indian Journal of Biotechnology (IJBT). http://nopr.niscair.res.in/handle/123456789/29142

Kumar, S., & Nair, K. N. (2013). Genetic Variation and Phylogenetic Relationships Among Indian Citrus Taxa Revealed by DAMD-PCR Markers. Genetic resources and crop evolution, 60(6), 1777-1800. https://doi.org/10.1007/s10722-013-9954-7

Lasley, B. L., Loskutoff, N. M., and Anderson, G. B. (1994). The Limitation of Conventional Breeding Programs and the Need and Promise of Assisted Reproduction in Nondomestic Species. Theriogenology, 41(1), 119-132.

Lee M. (1994) Inbred Lines of Maize and Their Molecular Markers. In: Freeling M., Walbot V. (eds) The Maize Handbook. Springer Lab Manuals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2694-9_65

Mahalanobis, P. C., 1936. The Generalized Distance in Statistics. Proc. Nat. Acad. Sci. (India), 2: 79-85.

Maniruzzaman, M. G. Azam, S. Islam, Hossain, M. G., & Rohman, M. M. (2018). Molecular assessment of maize inbred lines (Zea mays l.) Using microsatellite markers. Bangladesh Journal of Agricultural Research, 43(4), 533–542. https://doi.org/10.3329/bjar.v43i4.39151

Marker, S., & Krupakar, A. (2009). Genetic Divergence in Exotic Maize Germplasm (Zea mays L.). Journal of Agricultural and Biological Science, 4(4), 44-47.

Mohammadi, Sayyed Abolghasem, Prasanna, B. M., Sudan, C., and Singh, N. N. (2002). A Microsatellite Marker Based Study of Chromosomal Regions and Gene Effects on Yield and Yield Components in Maize. Cellular and Molecular Biology Letters, 7, 599–606.

Muchie, A., & Fentie, D. (2016). Performance Evaluation of Maize Hybrids (Zea Mays L.) in Bahir Dar Zuria District, North Western Ethiopia. International Invention Journal of Agricultural and Soil Science, 4(3), 37–43. http://hdl.handle.net/123456789/4279

Mustafa, H., Farooq, J., Ejaz-Ul-Hasan, E., Bibi, T., & Mahmood, T. (2015). Cluster and Principle Component Analyses of Maize Accessions Under Normal and Water Stress Conditions. Journal of Agricultural Sciences, Belgrade 60(1), 33-48. https://doi.org/10.2298/jas1501033m

Nyaligwa, L., Hussein, S., Amelework, B., and Ghebrehiwot, H. (2015). Genetic Diversity Analysis of Elite Maize Inbred Lines of Diverse Sources Using SSR Markers. Maydica, 60(3).

Ogunniyan, D. J., & Olakojo, S. A. (2014). Genetic Variation, Heritability, Genetic Advance and Agronomic Character Association of Yellow Elite Inbred Lines of Maize (Zea mays L.). Nigerian Journal of Genetics, 28(2), 24–28. https://doi.org/10.1016/j.nigjg.2015.06.005

Pejic I., P. Ajmonemarsan, M. Morgante, V. Kozumplick, P. Catiglioni, G. Taramino, M. Motto (1998). Comparative Analysis of Genetic Similarity Among Maize Inbred Lines Detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 97, 1248-1255

Perrier X., & Jacquemoud-Collet, J. P. (2016). DARwin Software: Dissimilarity Analysis and Representation for Windows (version 6.0. 010). http://darwin.cirad.fr/

Peter, and Rai. (1978). Heterosis as Function of Genetic Distance in Tomato. Indian Journal of Genetics and Plant Breeding (The), 38(2), 173–178.

Prasanna BM (2012). Diversity in Global Maize Germplasm and Novel Initiatives for Characterization and Utilization. J Biosci, 37, 843-855.

Prasanna, B. M. (2012). Diversity in Global Maize Germplasm: Characterization and Utilization. Journal of biosciences, 37(5), 843-855. 10.1007/s12038-012-9227-1

Prasanna, B. M., and Hoisington, D. (2003). Molecular Breeding for Maize Improvement: An Overview. Indian Journal of Biotechnology.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959. https://doi.org/10.1093/genetics/155.2.945

Ranatunga, M. A. B., Meenakshisundaram, P., Arumugachamy, S., and Maheswaran, M. (2009). Genetic Diversity Analysis of Maize (Zea mays L.) Inbreds Determined with Morphometric Traits and Simple Sequence Repeat Markers. Maydica, 54(1), 113.

Robsa Shuro, A. (2017). Review Paper on Approaches in Developing Inbred Lines in Cross-Pollinated Crops. Biochemistry and Molecular Biology, 2(4), 40.

Rogers J. S. (1972). Measures of Genetic Similarity and Genetic Distance. Studies in Genetics. VII, University of Texas Publication 7213, pp. 145—153.

Saboor Khan, A., Ullah, H., Shahwar, D., Fahad, S., Khan, N., Yasir, M., … Noor, M. (2018). Heritability and Correlation Analysis of Morphological and Yield Traits in Maize. Journal of Plant Biology and Crop Research, 1(2), 1–8. https://doi.org/10.33582/2637-7721/1008

Shull, G. H. (1908). The Composition of a Field of Maize. Journal of Heredity, (1), 296-301. https://doi.org/10.1093/jhered/os-4.1.296

Silveira, N. S. P. da, & Hanashiro, D. M. M. (2009). Similarity and Dissimilarity Between Superiors and Subordinates and Their Implications for Dyadic Relationship Quality. Revista de Administração Contemporânea, 13(1), 117–135. https://doi.org/10.1590/s1415-65552009000100008

Smith, J., and Smith, O. (1989). The Description and Assessment of Distances Between Inbred Lines of Maize: II. The Utility of Morphological, Biochemical, and Genetic Descriptors and a Scheme for The Testing of Distinctiveness Between Lines. Maydica, 34, 151–161. ISSN: 0025-6153

Sreckov, Z., Bocanski, J., Nastasic, A., Alovic, I. and V. . M. (2010). Correlation and path coefficient analysis of morphological traits of maize (Zea mays L.). Research Journal of Agricultural Science, 42(2), 292–296.

Sserumaga, J. P., Makumbi, D., Ji, H., Njoroge, K., Muthomi, J. W., Chemining’wa, G. N., Kim, H. (2014). Molecular Characterization of Tropical Maize Inbred Lines Using Microsatellite DNA Markers. Maydica, 59(3), 267–274. ISSN: 2279-8013

Taramino, G., & Tingey, S. (1996). Simple Sequence Repeats for Germplasm Analysis and Mapping in Maize. Genome, 39(2), 277-287. https://doi.org/10.1139/g96-038

Tomooka, N., Kaga, A., Isemura, T., and Vaughan, D. (2011). Vigna. In Wild Crop Relatives: Genomic and Breeding Resources: Legume Crops and Forages. Kole, C., Ed.

Tucker, C. M., Cadotte, M. W., Carvalho, S. B., Jonathan Davies, T., Ferrier, S., Fritz, S. A., … Mazel, F. (2017). A Guide to Phylogenetic Metrics for Conservation, Community Ecology and Macroecology. Biological Reviews, 92(2), 698–715. https://doi.org/10.1111/brv.12252

Vasal. (1998). Hybrid Maize Technology: Challenges and Expanding Possibilities for Research in The Next Century. In Proc. 7th Asian Reg. Maize Workshop. Los Banos, Philippines, February, 23–27.

Vathana, Y., Sa, K. J., Lim, S. E., and Lee, J. K. (2019). Genetic Diversity and Association Analyses of Chinese Maize Inbred Lines Using SSR Markers. Plant Breeding and Biotechnology, 7(3), 186–199.

Weber, J. L. (1990). Informativeness of Human (dC-dA)n · (dG-dT)n Polymorphisms. Genomics, 7(4), 524–530. https://doi.org/10.1016/0888-7543(90)90195-Z

Wright, S. (1934). The Method of Path Coefficients. The Annals of Mathematical Statistics, 5(3), 161–215. https://doi.org/10.1214/aoms/1177732676

Xia, X. C., Reif, J. C., Melchinger, a. E., Frisch, M., Hoisington, D. a., Beck, D., … Warburton, M. L. (2005). Genetic Diversity among CIMMYT Maize Inbred Lines Investigated with SSR Markers. Crop Science, 44(6), 2230-2237.

Xie, C., Warburton, M., Li, M., Li, X., Xiao, M., Hao, Z., … Zhang, S. (2008). Retracted Article: An Analysis of Population Structure and Linkage Disequilibrium Using Multilocus Data in 187 Maize Inbred Lines. Molecular Breeding, 21(4), 407–418.

Xu, S.-X., Liu, J., and Liu, J.-S. (2005). The Use of SSRs for Predicting the Hybrid Yield and Yield Heterosis in 15 Key Inbred Lines of Chinese Maize. Hereditas, 141, 207–215.

Zaman, M. A., & Islam, M. A. (2013). Genetic Diversity in Exotic Maize (Zea mays L.) Hybrids. Bangladesh Journal of Agricultural Research, 38(2), 335-341. Doi: 10.3329/BJAR.V38I2.15894

Zheng H., Wang H., Yang H., Wu J., Shi B., Cai R. and Luo L. (2013). Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm. PLoS ONE. 8(6), e66606.

Zuo, W., Chao, Q., Zhang, N., Ye, J., Tan, G., Li, B., … Xu, M. (2015). A Maize Wall-associated Kinase Confers Quantitative Resistance to Head Smut. Nature Genetics, 47(2), 151–157. https://doi.org/10.1038/ng.3170

Downloads

Published

2021-12-16

How to Cite

Madobe, M. A., Raihan, M. S., Hasan, M., & Biswas, M. S. (2021). Morpho-molecular Characterization of Maize Inbred Lines Accelerating Parental Selection for Hybridization. American Journal of Agricultural Science, Engineering, and Technology, 5(2), 431–452. https://doi.org/10.54536/ajaset.v5i2.110