Preparation and Characterization of Silk Fibroin-PANI Nanocomposites and Their Application for Electrophysiological Signals Recording

Authors

  • Mohamed K. M. Abd-Elbaki Zoology Department Faculty of Science, Fayoum University, Egypt
  • Hanan A. Matar Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, Egypt.
  • Naglaa R. E. Ismaeel Zoology Department Faculty of Science, Fayoum University, Egypt

DOI:

https://doi.org/10.54536/ajaset.v6i3.1009

Keywords:

Natural Silk, Self-Adhesive, PANI, Electrophysiological Signals Monitoring, Sports Management

Abstract

Wearable dry electrodes are required for long-term biopotential recordings, but their availability is limited. The diagnosis of coronary heart disease is possible with ambulatory electrocardiography (ECG). For ambulatory ECG sensing, on-skin electrodes are used by conformably contacting the skin’s moving and arbitrary formed surface. However, the low skin-adhesion of electrodes restricts their use in ambulatory ECG sensing for an extended period of time. Here, it was possible to create extremely skin-adhesive and washable on-skin electrodes by developing a new composite of Poly aniline (PANI) and silk fibroin (SF). Self-adhesive property of silk fibroin - PANI electrodes was achieved by coating with silk/Ca2+ adhesive layers. These electrodes were applied to the skin to capture high-quality ECG readings for the detection of cardiac real status in order to show how they can be used to detect precise and dependable signals. Silk fibroin - PANI electrodes showed an excellent performance for ECG signals recording over different physiological states.

Downloads

Download data is not yet available.

References

Abdel-Fattah, W. I., Atwa, N., & Ali, G. W. (2015). Influence of the protocol of fibroin extraction on the antibiotic activities of the constructed composites. Progress in Biomaterials, 4(2–4), 77–88. https://doi.org/10.1007/s40204-015-0039-x

Bissinger, A. (2017). Cardiac Autonomic Neuropathy: Why Should Cardiologists Care about That? Journal of Diabetes Research, 2017, 1–9. https://doi.org/10.1155/2017/5374176

Chao, D., Chen, J., Lu, X., Chen, L., Zhang, W., & Wei, Y. (2005). SEM study of the morphology of high molecular weight polyaniline. Synthetic Metals, 150(1), 47–51. https://doi.org/10.1016/j.synthmet.2005.01.010

Chen, Y. H., de Beeck, M., Vanderheyden, L., Carrette, E., Mihajlović, V., Vanstreels, K., Grundlehner, B., Gadeyne, S., Boon, P., & Van Hoof, C. (2014). Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording. Sensors, 14(12), 23758–23780. https://doi.org/10.3390/s141223758

Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Reviews in Biomedical Engineering, 3, 106–119. https://doi.org/10.1109/rbme.2010.2084078

Chun, S., Kim, D. W., Baik, S., Lee, H. J., Lee, J. H., Bhang, S. H., & Pang, C. (2018). Conductive and Stretchable Adhesive Electronics with Miniaturized Octopus-Like Suckers against Dry/Wet Skin for Biosignal Monitoring. Advanced Functional Materials, 28(52), 1805224. https://doi.org/10.1002/adfm.201805224

Das, P. S., Park, S. H., Baik, K. Y., Lee, J. W., & Park, J. Y. (2020). Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon, 158, 386–393. https://doi.org/10.1016/j.carbon.2019.11.001

Dhand, C., Das, M., Sumana, G., Srivastava, A. K., Pandey, M. K., Kim, C. G., Datta, M., & Malhotra, B. D. (2010). Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale, 2(5), 747. https://doi.org/10.1039/b9nr00346k

Ferrari, L. M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V., & Greco, F. (2018). Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 5(3), 1700771. https://doi.org/10.1002/advs.201700771

Gruetzmann, A., Hansen, S., & Müller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28(11), 1375–1390. https://doi.org/10.1088/0967-3334/28/11/005

Guo, W., Zheng, P., Huang, X., Zhuo, H., Wu, Y., Yin, Z., Li, Z., & Wu, H. (2019). Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials &Amp; Interfaces, 11(8), 8567–8575. https://doi.org/10.1021/acsami.8b21836

Huang, J., Virji, S., Weiller, B. H., & Kaner, R. B. (2004). Nanostructured Polyaniline Sensors. Chemistry - a European Journal, 10(6), 1314–1319. https://doi.org/10.1002/chem.200305211

Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690), 81–85. https://doi.org/10.1038/nature25443

Hwang, S. W., Tao, H., Kim, D. H., Cheng, H., Song, J. K., Rill, E., Brenckle, M. A., Panilaitis, B., Won, S. M., Kim, Y. S., Song, Y. M., Yu, K. J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D. L., Zakin, M. R., Slepian, M. J., . . . Rogers, J. A. (2012). A Physically Transient Form of Silicon Electronics. Science, 337(6102), 1640–1644. https://doi.org/10.1126/science.1226325

Jeong, J. W., Yeo, W. H., Akhtar, A., Norton, J. J. S., Kwack, Y. J., Li, S., Jung, S. Y., Su, Y., Lee, W., Xia, J., Cheng, H., Huang, Y., Choi, W. S., Bretl, T., & Rogers, J. A. (2013). Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics. Advanced Materials, 25(47), 6839–6846. https://doi.org/10.1002/adma.201301921

Kabiri Ameri, S., Ho, R., Jang, H., Tao, L., Wang, Y., Wang, L., Schnyer, D. M., Akinwande, D., & Lu, N. (2017). Graphene Electronic Tattoo Sensors. ACS Nano, 11(8), 7634–7641. https://doi.org/10.1021/acsnano.7b02182

Kim, D. H., Lu, N., Ma, R., Kim, Y. S., Kim, R. H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T. I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H. J., Keum, H., McCormick, M., . . . Rogers, J. A. (2011). Epidermal Electronics. Science, 333(6044), 838–843. https://doi.org/10.1126/science.1206157

Kim, J. H., Kim, S. R., Kil, H. J., Kim, Y. C., & Park, J. W. (2018). Highly Conformable, Transparent Electrodes for Epidermal Electronics. Nano Letters, 18(7), 4531–4540. https://doi.org/10.1021/acs.nanolett.8b01743

Kim, T., Park, J., Sohn, J., Cho, D., & Jeon, S. (2016). Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano, 10(4), 4770–4778. https://doi.org/10.1021/acsnano.6b01355

Lai, J. C., Jia, X. Y., Wang, D. P., Deng, Y. B., Zheng, P., Li, C. H., Zuo, J. L., & Bao, Z. (2019). Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09130-z

Lee, E. K., Kim, M. K., & Lee, C. H. (2019). Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 21(1), 299–323. https://doi.org/10.1146/annurev-bioeng-060418-052315

Lee, S. M., Byeon, H. J., Lee, J. H., Baek, D. H., Lee, K. H., Hong, J. S., & Lee, S. H. (2014). Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Scientific Reports, 4(1). https://doi.org/10.1038/srep06074

Ling, S., Zhang, Q., Kaplan, D. L., Omenetto, F., Buehler, M. J., & Qin, Z. (2016). Printing of stretchable silk membranes for strain measurements. Lab on a Chip, 16(13), 2459–2466. https://doi.org/10.1039/c6lc00519e

Liu, S., Li, Y., Guo, W., Huang, X., Xu, L., Lai, Y. C., Zhang, C., & Wu, H. (2019). Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy, 65, 104005. https://doi.org/10.1016/j.nanoen.2019.104005

Lo Celso, C., Lin, C. P., & Scadden, D. T. (2010). In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nature Protocols, 6(1), 1–14. https://doi.org/10.1038/nprot.2010.168

Mohammed, H. Y., Farea, M. A., Sayyad, P. W., Ingle, N. N., Al-Gahouari, T., Mahadik, M. M., Bodkhe, G. A., Shirsat, S. M., & Shirsat, M. D. (2022). Selective and sensitive chemiresistive sensors based on polyaniline/graphene oxide nanocomposite: A cost-effective approach. Journal of Science: Advanced Materials and Devices, 7(1), 100391. https://doi.org/10.1016/j.jsamd.2021.08.004

Oves, M., Shahadat, M., Ansari, S. A., Aslam, M., & Ismail, I. I. (2018). Polyaniline Nanocomposite Materials for Biosensor Designing. Electrically Conductive Polymer and Polymer Composites, 113–135. https://doi.org/10.1002/9783527807918.ch6

Pani, D., Achilli, A., & BonFigurelio, A. (2018). Survey on Textile Electrode Technologies for Electrocardiographic (ECG) Monitoring, from Metal Wires to Polymers. Advanced Materials Technologies, 3(10), 1800008. https://doi.org/10.1002/admt.201800008

Peng, H. L., Liu, J. Q., Dong, Y. Z., Yang, B., Chen, X., & Yang, C. S. (2016). Parylene-based flexible dry electrode for bioptential recording. Sensors and Actuators B: Chemical, 231, 1–11. https://doi.org/10.1016/j.snb.2016.02.061

Poblete, P. F., Kennedy, H. L., & Caralis, D. G. (1978). Detection of Ventricular Ectopy in Patients with Coronary Heart Disease and Normal Subjects by Exercise Testing and Ambulatory Electrocardiography. Chest, 74(4), 402–407. https://doi.org/10.1016/s0012-3692(15)37386-4

Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., & Eckel, R. H. (2006). Obesity and Cardiovascular Disease: Pathophysiology, Evaluation, and Effect of Weight Loss. Circulation, 113(6), 898–918. https://doi.org/10.1161/circulationaha.106.171016

Portelli, A., & Nasuto, S. (2017). Design and Development of Non-Contact Bio-Potential Electrodes for Pervasive Health Monitoring Applications. Biosensors, 7(4), 2. https://doi.org/10.3390/bios7010002

Prasutiyo, Y. J., Manaf, A., & Hafizah, M. A. E. (2020). Synthesis of polyaniline by chemical oxidative polymerization and characteristic of conductivity and reflection for various strong acid dopants. Journal of Physics: Conference Series, 1442(1), 012003. https://doi.org/10.1088/1742-6596/1442/1/012003

Sekitani, T., Yokota, T., Kuribara, K., Kaltenbrunner, M., Fukushima, T., Inoue, Y., Sekino, M., Isoyama, T., Abe, Y., Onodera, H., & Someya, T. (2016). Ultraflexible organic amplifier with biocompatible gel electrodes. Nature Communications, 7(1). https://doi.org/10.1038/ncomms11425

Steinberg, C., Philippon, F., Sanchez, M., Fortier-Poisson, P., O’Hara, G., Molin, F., Sarrazin, J. F., Nault, I., Blier, L., Roy, K., Plourde, B., & Champagne, J. (2019). A Novel Wearable Device for Continuous Ambulatory ECG Recording: Proof of Concept and Assessment of Signal Quality. Biosensors, 9(1), 17. https://doi.org/10.3390/bios9010017

Thomas, S., & M., P. V. (2011). Handbook of Engineering and Specialty Thermoplastics, Volume 4: Nylons (1st ed.). Wiley-Scrivener.

Wang, Q., Ling, S., Liang, X., Wang, H., Lu, H., & Zhang, Y. (2019b). Self-Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Advanced Functional Materials, 29(16), 1808695. https://doi.org/10.1002/adfm.201808695

Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W. H., Park, S. I., Boyce, B., Kim, H., Yu, J., Lai, H. Y., Jung, S., Zhou, Y., Kim, J., Cho, S., Huang, Y., Bretl, T., & Rogers, J. A. (2015). An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 28(22), 4462–4471. https://doi.org/10.1002/adma.201504155

Xu, L., Gutbrod, S. R., Bonifas, A. P., Su, Y., Sulkin, M. S., Lu, N., Chung, H. J., Jang, K. I., Liu, Z., Ying, M., Lu, C., Webb, R. C., Kim, J. S., Laughner, J. I., Cheng, H., Liu, Y., Ameen, A., Jeong, J. W., Kim, G. T., . . . Rogers, J. A. (2014). 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4329

Xu, Z., Chen, L., Lu, L., Du, R., Ma, W., Cai, Y., An, X., Wu, H., Luo, Q., Xu, Q., Zhang, Q., & Jia, X. (2020). A Highly-Adhesive and Self-Healing Elastomer for Bio-Interfacial Electrode. Advanced Functional Materials, 31(1), 2006432. https://doi.org/10.1002/adfm.202006432

Yao, G., Xu, L., Cheng, X., Li, Y., Huang, X., Guo, W., Liu, S., Wang, Z. L., & Wu, H. (2019b). Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing. Advanced Functional Materials, 30(6), 1907312. https://doi.org/10.1002/adfm.201907312

Yin, Z., Jian, M., Wang, C., Xia, K., Liu, Z., Wang, Q., Zhang, M., Wang, H., Liang, X., Liang, X., Long, Y., Yu, X., & Zhang, Y. (2018). Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. Nano Letters, 18(11), 7085–7091. https://doi.org/10.1021/acs.nanolett.8b03085

Zhang, C., Liu, S., Huang, X., Guo, W., Li, Y., & Wu, H. (2019). A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy, 62, 164–170. https://doi.org/10.1016/j.nanoen.2019.05.046

Downloads

Published

2022-12-03

How to Cite

Abd-Elbaki, M. K. M., Matar, H. A., & Ismaeel, N. R. E. (2022). Preparation and Characterization of Silk Fibroin-PANI Nanocomposites and Their Application for Electrophysiological Signals Recording. American Journal of Agricultural Science, Engineering, and Technology, 6(3), 142–149. https://doi.org/10.54536/ajaset.v6i3.1009