Preparation and Characterization of Zinc Oxide Nanoparticles by Co-Precipitation Method and Evaluation of Theirs Antifungal Activity in Spore Germination of Dermatophytes
DOI:
https://doi.org/10.54536/ajlsi.v3i2.3183Keywords:
Dermatophyte, Spore, Nanoparticle, ZnO, AntifungalAbstract
This research study synthesized Prepared zinc oxide nanoparticles using the co-precipitation method. The antifungal activities of these nanoparticles (ZnO NPs) and their mode of action against Trichophyton rubrum and Microsporum canis were investigated using samples obtained from patients referred to consulting clinics in Kirkuk city. These nano oxides were identified through XRD diffraction analysis, FTIR measurement, and Scanning Electron Microscopy (SEM). The Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values were recorded as 1.330 and 4.530 µg/mL for Trichophyton rubrum, and 0.333 and 10.67 μg/ml for Microsporum canis, respectively. The antifungal effect of (ZnO NPs) was similar to that of Griseofulvin, while it exhibited a higher effect than ketoconazole. Furthermore, (ZnO NPs) demonstrated a significant (P < 0.05) inhibition effect on spore germination for all tested dermatophytes, although the extent of this effect varied depending on the fungal isolates.
Downloads
References
Abbood, A. H. S. H. A. (2020). The Role of Silver (Ag) Nanoparticles synthesis by Penicillium spp against the Toxicity of Echinococcus Granulosus in Adult Albino Male Rats. University of Kirkuk. Medico-legal Update, 20(1), 533. https://doi.org/10.37506/mlu.v20i1.414.
Abod, H. A. (2017). The effect of silver nanoparticles prepared using Aspergillus niger in some pathogenic bacteria. University of Kirkuk, Kirkuk Journal of Science, 12(1). https://doi.org/10.1166/jbmb.2008.401.
Aggarwal, N., & Goindi, S. (2013). Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. Journal of biomedical nanotechnology, 9(4), 564-576. https://doi.org/10.1166/jbn.2013.1569.
Ahmadpour Kermani, S., Salari, S., & Ghasemi Nejad Almani, P. (2021). Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: In vitro evaluation. Journal of clinical laboratory analysis, 35(1), e23577. https://doi.org/10.1002/jcla.23577.
Al-Janabi, A. A. (2014). Dermatophytosis: Causes, clinical features, signs and treatment. J Symptoms Signs, 3(3), 200-203. file:///C:/Users/h/Downloads/Dermatophytosiscausesclinical%20(1).
Badiee, P., Alborzi, A., Moeini, M., Haddadi, P., Farshad, S., Japoni, A., & Ziyaeyan, M. (2012). Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Archives of Iranian medicine, 15(7), 0-0. https://pubmed.ncbi.nlm.nih.gov/22724880/.
Barros, M. E. D. S., Santos, D. D. A., & Hamdan, J. S. (2007). Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). Journal of medical microbiology, 56(4), 514-518. https://doi.org/10.1099/jmm.0.46542-0.
Bloom, P., & Markson, L. (2001). Are there principles that apply only to the acquisition of words? A reply to Waxman and Booth. Cognition, 78(1), 89-90. https://doi.org/10.1016/S0010-0277(00)00111-6.
Bouchara, J. P., Mignon, B., & Chaturvedi, V. (2017). Dermatophytes and dermatophytoses: a thematic overview of state of the art, and the directions for future research and developments. Mycopathologia, 182, 1-4. https://doi.org/ 10.1007/s11046-017-0114-z.
Elad, Y., Yunis, H., & Katan, T. (1992). Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology, 41(1), 41-46. https://doi.org/10.1111/j.1365-3059.1992.tb02314.x.
El-Diasty, E. M., Ahmed, M. A., Okasha, N. A. G. W. A., Mansour, S. F., El-Dek, S. I., El-Khalek, H. M. A., & Youssif, M. H. (2013). Antifungal activity of zinc oxide nanoparticles against dermatophytic lesions of cattle. Rom J Biophys, 23(3), 191-202. https://www.rjb.ro/articles/378/Ahmed-f.
Fadlelmoula, A., Pinho, D., Carvalho, V. H., Catarino, S. O., & Minas, G. (2022). Fourier transform infrared (FTIR) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices. Micromachines, 13(2), 187. https://doi.org/10.3390/mi13020187.
Gaikwad, S. S., Gandhi, A. C., Pandit, S. D., Pant, J., Chan, T. S., Cheng, C. L., ... & Wu, S. Y. (2014). Oxygen induced strained ZnO nanoparticles: an investigation of Raman scattering and visible photoluminescence. Journal of Materials Chemistry C, 2(35), 7264-7274. https://doi.org/10.1039/C4TC00566J.
Gupta, A. K., Williams, J. V., Zaman, M., & Singh, J. (2009). In vitro pharmacodynamic characteristics of griseofulvin against dermatophyte isolates of Trichophyton tonsurans from tinea capitis patients. Medical mycology, 47(8), 796-801. https://doi.org/10.3109/13693780802712523.
Hadi, F. A., & Kadhim, R. G. (2019, July). A study of the effect of nano zinc oxide on cure characteristics and mechanical properties of rubber composites. Journal of Physics: Conference Series, 1234(1), 012043. https://doi.org/10.1088/1742-6596/1234/1/012043
He, Q., Yuan, Z., Zhang, J., Zhang, S., Zhang, W., Zou, Z., & Wang, H. (2017). Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading. Chemosphere, 173, 411-416. https://doi.org/10.1016/j.chemosphere.2017.01.085.
Hu, L., Pan, H., Zhou, Y., & Zhang, M. (2011). Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources, 6(3), 3515-3525. https://doi.org/10.15376/BIORES.6.3.3515-3525.
Khaleel, A., Kapoor, P. N., & Klabunde, K. J. (1999). Nanocrystalline metal oxides as new adsorbents for air purification. Nanostructured Materials, 11(4), 459-468. https://doi.org/10.1016/S0965-9773(99)00329-3.
Khalil, K. A., Fouad, H., Elsarnagawy, T., & Almajhdi, F. N. (2013). Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. International journal of electrochemical science, 8(3), 3483-3493. https://doi.org/10.1016/S1452-3981(23)14406-3.
Khan, M. I., Akhtar, S., Zafar, S., Shaheen, A., Khan, M. A., Luque, R., & ur Rehman, A. (2015). Removal of Congo red from aqueous solution by anion exchange membrane (EBTAC): adsorption kinetics and themodynamics. Materials, 8(7), 4147-4161. https://doi.org/10.3390/ma8074147.
Khan, S. A., Shamsuzzaman, S. M., Rahman, A. K. M. S., Ashekin, N. A. K., Mahmud, R., Sharmin, R., ... & Haque, F. (2021). Isolation and Identification of Dermatophytes Causing Dermatophytosis at a Tertiary Care Hospital in Bangladesh. Archives of Clinical and Biomedical Research, 5(3), 437-451. https://doi.org/10.26502/acbr.50170178.
Liu, M., Sun, J., Sun, Y., Bock, C., & Chen, Q. (2009). Thickness-dependent mechanical properties of polydimethylsiloxane membranes. Journal of micromechanics and microengineering, 19(3), 035028. https://doi.org/10.1088/0960-1317/19/3/035028.
Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials. https://doi.org/10.1088/1468-6996/9/3/035004
Plascencia‐Jatomea, M., Viniegra, G., Olayo, R., Castillo‐Ortega, M. M., & Shirai, K. (2003). Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromolecular Bioscience, 3(10), 582-586. https://doi.org/10.1002/mabi.200350024.
Reddy, T. A., Maor, I., & Panjapornpon, C. (2007). Calibrating detailed building energy simulation programs with measured data—Part I: General methodology (RP-1051). Hvac&R Research, 13(2), 221-241. https://doi.org/10.1080/10789669.2007.10390952.
Rodríguez, R. L., Rebar, D., & Fowler-Finn, K. D. (2013). The evolution and evolutionary consequences of social plasticity in mate preferences. Animal Behaviour, 85(5), 1041-1047. https://doi.org/10.1016/j.anbehav.2013.01.006.
Vatsha, B., Tetyana, P., Shumbula, P. M., Ngila, J. C., Sikhwivhilu, L. M., & Moutloali, R. M. (2013). Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg (OH) 2 and MgO nanoparticles. Journal of Biomaterials and Nanobiotechnology, 4(04), 365. http://dx.doi.org/ 10.4236/jbnb.2013.44046.
Wang, H. C., Hsieh, M. I., Choi, P. C., & Wu, C. J. (2018). Comparison of the Sensititre YeastOne and CLSI M38-A2 microdilution methods in determining the activity of amphotericin B, itraconazole, voriconazole, and posaconazole against Aspergillus species. Journal of Clinical Microbiology, 56(10), 10-1128. https://doi.org/10.1128/jcm.00780-18.
Wirunchit, S., Gansa, P., & Koetniyom, W. (2021). Synthesis of ZnO nanoparticles by Ball-milling process for biological applications. Materials Today: Proceedings, 47, 3554-3559. https://doi.org/10.1016/j.matpr.2021.03.559.
Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and environmental microbiology, 77(7), 2325-2331. https://doi.org/10.1128/AEM.02149-10.
Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M., Gill, H., Phan, L., ... & McIntyre, R. S. (2020). Impact of COVID-19 pandemic on mental health in the general population: A systematic review. Journal of affective disorders, 277, 55-64. https://doi.org/10.1016/j.jad.2020.08.001.
Zhang, Y., Li, H. N., Li, C., Huang, C., Ali, H. M., Xu, X., ... & Said, Z. (2022). Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction, 10(6), 803-841. https://doi.org/10.1007/s40544-022-0674-x.
Zili, Z., Sfar, S., & Fessi, H. (2005). Preparation and characterization of poly-ɛ-caprolactone nanoparticles containing griseofulvin. International journal of pharmaceutics, 294(1-2), 261-267. https://doi.org/10.1016/j.ijpharm.2005.01.020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hussein A. R., Salah S. Zainalabden
This work is licensed under a Creative Commons Attribution 4.0 International License.