Chatbots in Cybersecurity: Enhancing Security Chatbot Efficacy through Iterative Feedback Loops and User-Centric Approaches

Authors

  • Thawbaan Adam IMT Mines Ales, France
  • Song Emmanuel IMT Mines Ales, France
  • Gilles Dusserre IMT Mines Ales, France
  • Nasir Baba Ahmed IMT Mines Ales, France
  • Zahir Babatunde AirMatrix, Canada
  • Lawan Mohammed Isa IMT Mines Ales, France
  • Danladi Ayuba Job IMT Mines Ales, France

DOI:

https://doi.org/10.54536/ajise.v3i3.2919

Keywords:

AI Chatbot, Cybersecurity, Cyber Threat, Feedback, Security Assistant Bot

Abstract

Chatbots are of continuous importance in our interactive lives. Although used in several domains, there are questions about its security assurance; therefore, there is a need to know its capabilities, limitations, and challenges in cybersecurity. The research explores the use of chatbots in enhancing cyber defences and their potentials. It examines chatbots’ current applications in cybersecurity, including IT services, information protection, and user education. Furthermore, the research proposes implementing an Intelligent Chatbot Security Assistant (ICSA) model on WhatsApp to detect and respond to cyberattacks based on user conversations and identifies the challenges with this implementation. To address these challenges, it suggests incorporating enhanced privacy measures, real-time monitoring, rigorous evaluation and validation, and concludes with user-centric design principles using iterative feedback. This research provides valuable insights into the use of chatbots in cybersecurity, their current level of research and implementation as a cybersecurity tool, and directions for future research.

Downloads

Download data is not yet available.

References

AÇAR, K. V. (2017). Webcam Child Prostitution: An Exploration Of Current And Futuristic Methods Of Detection. https://doi.org/10.5281/ZENODO.495775

Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427–445. https://doi.org/10.1007/s12525-020-00414-7

Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations (Vol. 584, pp. 373–383). Springer International Publishing. https://doi.org/10.1007/978-3-030-49186-4_31

Akter, S., Hossain, M. A., Sajib, S., Sultana, S., Rahman, M., Vrontis, D., & McCarthy, G. (2023). A framework for AI-powered service innovation capability: Review and agenda for future research. Technovation, 125, 102768. https://doi.org/10.1016/j.technovation.2023.102768

Alazzam, B. A., Alkhatib, M., & Shaalan, K. (2023). Artificial Intelligence Chatbots: A Survey of Classical versus Deep Machine Learning Techniques. Information Sciences Letters, 12(4), 1217–1233. https://doi.org/10.18576/isl/120437

Anderson, P., Zuo, Z., Yang, L., & Qu, Y. (2019). An intelligent online grooming detection system using AI technologies. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858973

Barry, E. S., Merkebu, J., & Varpio, L. (2022). State-of-the-art literature review methodology: A six-step approach for knowledge synthesis. Perspectives on Medical Education, 11(5), 1–8. https://doi.org/10.1007/S40037-022-00725-9

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). ACM. https://doi.org/10.1145/3442188.3445922

Brandtzaeg, P. B., & Følstad, A. (2018). Chatbots: Changing user needs and motivations. Interactions, 25(5), 38–43. https://doi.org/10.1145/3236669

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners (arXiv:2005.14165). arXiv. http://arxiv.org/abs/2005.14165

Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502

Caldarini, G., Jaf, S., & McGarry, K. (2022). A Literature Survey of Recent Advances in Chatbots. Information, 13(1), 41. https://doi.org/10.3390/info13010041

Cambria, E., Li, Y., Xing, F. Z., Poria, S., & Kwok, K. (2020). SenticNet 6: Ensemble application of symbolic and subsymbolic AI for sentiment analysis. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 105–114). ACM. https://doi.org/10.1145/3340531.3412003

Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2017). Artificial intelligence and the ‘good society’: The US, EU, and UK approach. Science and Engineering Ethics. https://doi.org/10.1007/s11948-017-9901-7

Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information Science and Technology, 37(1), 51–89. https://doi.org/10.1002/aris.1440370103

Computer and Information Security Handbook. (2017). Network Security, 2017(11), 4. https://doi.org/10.1016/S1353-4858(17)30090-9

Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811–817. https://doi.org/10.1017/S1351324916000243

Dan, A., Gupta, S., Rakshit, S., & Banerjee, S. (2019). Toward an AI Chatbot-Driven Advanced Digital Locker. In M. Chakraborty, S. Chakrabarti, V. E. Balas, & J. K. Mandal (Eds.), Proceedings of International Ethical Hacking Conference 2018 (Vol. 811, pp. 37–46). Springer Singapore. https://doi.org/10.1007/978-981-13-1544-2_4

Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining ‘gamification’. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning future media environments (pp. 9–15). ACM. https://doi.org/10.1145/2181037.2181040

Floridi, L., & Cowls, J. (2021). A unified framework of five principles for AI in society. In L. Floridi (Ed.), Ethics, governance, and policies in artificial intelligence (Vol. 144, pp. 5–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_2

Følstad, A., & Brandtzæg, P. B. (2017). Chatbots and the new world of HCI. Interactions, 24(4), 38–42. https://doi.org/10.1145/3085558

Gao, J., Galley, M., & Li, L. (2019). Neural Approaches to Conversational AI. Foundations and Trends® in Information Retrieval, 13(2–3), 127–298. https://doi.org/10.1561/1500000074

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé, H., & Crawford, K. (2018). Datasheets for datasets (arXiv:1803.09010). arXiv. https://doi.org/10.48550/arXiv.1803.09010

Goksel Canbek, N., & Mutlu, M. E. (2016). On the track of Artificial Intelligence: Learning with Intelligent Personal Assistants. International Journal of Human Sciences, 13(1), 592. https://doi.org/10.14687/ijhs.v13i1.3549

Gómez Mármol, F., Gil Pérez, M., & Martínez Pérez, G. (2016). I don’t trust ICT: Research challenges in cyber security. In S. M. Habib, J. Vassileva, S. Mauw, & M. Mühlhäuser (Eds.), Trust management X (Vol. 473, pp. 129–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-41354-9_9

Hamad, S., & Yeferny, T. (2020). A chatbot for information security (arXiv:2012.00826). arXiv. http://arxiv.org/abs/2012.00826

Hien, H. T., Cuong, P.-N., Nam, L. N. H., Nhung, H. L. T. K., & Thang, L. D. (2018). Intelligent assistants in higher-education environments: The FIT-EBot, a chatbot for administrative and learning support. In Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018 (pp. 69–76). ACM. https://doi.org/10.1145/3287921.3287937

Hoffman, D. L., & Novak, T. P. (2016). Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2840975

Jung, S. (2019). Semantic vector learning for natural language understanding. Computer Speech & Language, 56, 130–145. https://doi.org/10.1016/j.csl.2018.12.008

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004

Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1746–1751). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1181

Kowalski, S., Pavlovska, K., & Goldstein, M. (2013). Two Case Studies in Using Chatbots for Security Training. In R. C. Dodge & L. Futcher (Eds.), Information Assurance and Security Education and Training (Vol. 406, pp. 265–272). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39377-8_31

Langner, B., Vogel, S., & Black, A. W. (2010). Evaluating a dialog language generation system: Comparing the Mountain system to other NLG approaches. In Proceedings of Interspeech 2010 (pp. 1109–1112). International Speech Communication Association. https://doi.org/10.21437/Interspeech.2010-353

Lee, S., Lee, J., Lee, W., Lee, S., Kim, S., & Kim, E. T. (2020). Design of integrated messenger anti-virus system using chatbot service. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1613–1615). IEEE. https://doi.org/10.1109/ICTC49870.2020.9289514

Lin, L., D’Haro, L. F., & Banchs, R. (2016). A web-based platform for collection of human-chatbot interactions. In Proceedings of the Fourth International Conference on Human-Agent Interaction (pp. 363–366). ACM. https://doi.org/10.1145/2974804.2980500

McShane, M. (2017). Natural Language Understanding (NLU, not NLP) in Cognitive Systems. AI Magazine, 38(4), 43–56. https://doi.org/10.1609/aimag.v38i4.2745

McTear, M., Callejas, Z., & Griol, D. (2016). The conversational interface. Springer International Publishing. https://doi.org/10.1007/978-3-319-32967-3

Perera, R., & Nand, P. (2017). Recent Advances in Natural Language Generation: A Survey and Classification of the Empirical Literature. Computing and Informatics, 36(1), 1–32. https://doi.org/10.4149/cai_2017_1_1

Pfleeger, C. P., & Pfleeger, S. L. (2012). Analyzing computer security: A threat (2nd ed., intern. ed). Pearson Education International.

Radziwill, N. M., & Benton, M. C. (2017). Evaluating quality of chatbots and intelligent conversational agents (arXiv:1704.04579). arXiv. http://arxiv.org/abs/1704.04579

Ramesh, K., Ravishankaran, S., Joshi, A., & Chandrasekaran, K. (2017). A survey of design techniques for conversational agents. In S. Kaushik, D. Gupta, L. Kharb, & D. Chahal (Eds.), Information, communication and computing technology (Vol. 750, pp. 336–350). Springer Singapore. https://doi.org/10.1007/978-981-10-6544-6_31

Sabbagh, B. A., Ameen, M., Watterstam, T., & Kowalski, S. (2012). A prototype for HI2Ping information security culture and awareness training. In Proceedings of the 2012 International Conference on E-Learning and E-Technologies in Education (ICEEE) (pp. 32–36). IEEE. https://doi.org/10.1109/ICeLeTE.2012.6333397

Verspoor, K., Cohen, K. B., Lanfranchi, A., Warner, C., Johnson, H. L., Roeder, C., Choi, J. D., Funk, C., Malenkiy, Y., Eckert, M., Xue, N., Baumgartner, W. A., Bada, M., Palmer, M., & Hunter, L. E. (2012). A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools. BMC Bioinformatics, 13(1), 207. https://doi.org/10.1186/1471-2105-13-207

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2020). XLNet: Generalized autoregressive pretraining for language understanding (arXiv:1906.08237). arXiv. http://arxiv.org/abs/1906.08237

Yoo, J., & Cho, Y. (2022). ICSA: Intelligent chatbot security assistant using Text-CNN and multi-phase real-time defense against SNS phishing attacks. Expert Systems with Applications, 207, 117893. https://doi.org/10.1016/j.eswa.2022.117893

Zambrano, P., Sanchez, M., Torres, J., & Fuertes, W. (2017). BotHook: An option against cyberpedophilia. In Proceedings of the 2017 1st Cyber Security in Networking Conference (CSNet) (pp. 1–3). IEEE. https://doi.org/10.1109/CSNET.2017.8241994

Zikopoulos, P. (Ed.). (2012). Understanding big data: Analytics for enterprise class Hadoop and streaming data; Learn how IBM hardens Hadoop for enterprise-class scalability and reliability, gain insight into IBM’s unique in-motion and at-rest Big Data analytics platform, learn tips and tricks for Big Data use cases and solutions, get a quick Hadoop primer. McGraw-Hill.

Zimba, A., Chen, H., Wang, Z., & Chishimba, M. (2020). Modeling and detection of the multi-stages of Advanced Persistent Threats attacks based on semi-supervised learning and complex networks characteristics. Future Generation Computer Systems, 106, 501–517. https://doi.org/10.1016/j.future.2020.01.032

Published

2024-11-29

How to Cite

Thawbaan, A., Emmanuel, S., Dusserre, G., Ahmed, N. B., Babatunde, Z., Isa, L. M., & Job, D. A. (2024). Chatbots in Cybersecurity: Enhancing Security Chatbot Efficacy through Iterative Feedback Loops and User-Centric Approaches. American Journal of Innovation in Science and Engineering, 3(3), 77–87. https://doi.org/10.54536/ajise.v3i3.2919

Most read articles by the same author(s)