Chatbots in Cybersecurity: Enhancing Security Chatbot Efficacy through Iterative Feedback Loops and User-Centric Approaches
DOI:
https://doi.org/10.54536/ajise.v3i3.2919Keywords:
AI Chatbot, Cybersecurity, Cyber Threat, Feedback, Security Assistant BotAbstract
Chatbots are of continuous importance in our interactive lives. Although used in several domains, there are questions about its security assurance; therefore, there is a need to know its capabilities, limitations, and challenges in cybersecurity. The research explores the use of chatbots in enhancing cyber defences and their potentials. It examines chatbots’ current applications in cybersecurity, including IT services, information protection, and user education. Furthermore, the research proposes implementing an Intelligent Chatbot Security Assistant (ICSA) model on WhatsApp to detect and respond to cyberattacks based on user conversations and identifies the challenges with this implementation. To address these challenges, it suggests incorporating enhanced privacy measures, real-time monitoring, rigorous evaluation and validation, and concludes with user-centric design principles using iterative feedback. This research provides valuable insights into the use of chatbots in cybersecurity, their current level of research and implementation as a cybersecurity tool, and directions for future research.
Downloads
References
AÇAR, K. V. (2017). Webcam Child Prostitution: An Exploration Of Current And Futuristic Methods Of Detection. https://doi.org/10.5281/ZENODO.495775
Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427–445. https://doi.org/10.1007/s12525-020-00414-7
Adamopoulou, E., & Moussiades, L. (2020). An Overview of Chatbot Technology. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations (Vol. 584, pp. 373–383). Springer International Publishing. https://doi.org/10.1007/978-3-030-49186-4_31
Akter, S., Hossain, M. A., Sajib, S., Sultana, S., Rahman, M., Vrontis, D., & McCarthy, G. (2023). A framework for AI-powered service innovation capability: Review and agenda for future research. Technovation, 125, 102768. https://doi.org/10.1016/j.technovation.2023.102768
Alazzam, B. A., Alkhatib, M., & Shaalan, K. (2023). Artificial Intelligence Chatbots: A Survey of Classical versus Deep Machine Learning Techniques. Information Sciences Letters, 12(4), 1217–1233. https://doi.org/10.18576/isl/120437
Anderson, P., Zuo, Z., Yang, L., & Qu, Y. (2019). An intelligent online grooming detection system using AI technologies. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–6). IEEE. https://doi.org/10.1109/FUZZ-IEEE.2019.8858973
Barry, E. S., Merkebu, J., & Varpio, L. (2022). State-of-the-art literature review methodology: A six-step approach for knowledge synthesis. Perspectives on Medical Education, 11(5), 1–8. https://doi.org/10.1007/S40037-022-00725-9
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). ACM. https://doi.org/10.1145/3442188.3445922
Brandtzaeg, P. B., & Følstad, A. (2018). Chatbots: Changing user needs and motivations. Interactions, 25(5), 38–43. https://doi.org/10.1145/3236669
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners (arXiv:2005.14165). arXiv. http://arxiv.org/abs/2005.14165
Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502
Caldarini, G., Jaf, S., & McGarry, K. (2022). A Literature Survey of Recent Advances in Chatbots. Information, 13(1), 41. https://doi.org/10.3390/info13010041
Cambria, E., Li, Y., Xing, F. Z., Poria, S., & Kwok, K. (2020). SenticNet 6: Ensemble application of symbolic and subsymbolic AI for sentiment analysis. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 105–114). ACM. https://doi.org/10.1145/3340531.3412003
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2017). Artificial intelligence and the ‘good society’: The US, EU, and UK approach. Science and Engineering Ethics. https://doi.org/10.1007/s11948-017-9901-7
Chowdhury, G. G. (2003). Natural language processing. Annual Review of Information Science and Technology, 37(1), 51–89. https://doi.org/10.1002/aris.1440370103
Computer and Information Security Handbook. (2017). Network Security, 2017(11), 4. https://doi.org/10.1016/S1353-4858(17)30090-9
Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811–817. https://doi.org/10.1017/S1351324916000243
Dan, A., Gupta, S., Rakshit, S., & Banerjee, S. (2019). Toward an AI Chatbot-Driven Advanced Digital Locker. In M. Chakraborty, S. Chakrabarti, V. E. Balas, & J. K. Mandal (Eds.), Proceedings of International Ethical Hacking Conference 2018 (Vol. 811, pp. 37–46). Springer Singapore. https://doi.org/10.1007/978-981-13-1544-2_4
Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining ‘gamification’. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning future media environments (pp. 9–15). ACM. https://doi.org/10.1145/2181037.2181040
Floridi, L., & Cowls, J. (2021). A unified framework of five principles for AI in society. In L. Floridi (Ed.), Ethics, governance, and policies in artificial intelligence (Vol. 144, pp. 5–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_2
Følstad, A., & Brandtzæg, P. B. (2017). Chatbots and the new world of HCI. Interactions, 24(4), 38–42. https://doi.org/10.1145/3085558
Gao, J., Galley, M., & Li, L. (2019). Neural Approaches to Conversational AI. Foundations and Trends® in Information Retrieval, 13(2–3), 127–298. https://doi.org/10.1561/1500000074
Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé, H., & Crawford, K. (2018). Datasheets for datasets (arXiv:1803.09010). arXiv. https://doi.org/10.48550/arXiv.1803.09010
Goksel Canbek, N., & Mutlu, M. E. (2016). On the track of Artificial Intelligence: Learning with Intelligent Personal Assistants. International Journal of Human Sciences, 13(1), 592. https://doi.org/10.14687/ijhs.v13i1.3549
Gómez Mármol, F., Gil Pérez, M., & Martínez Pérez, G. (2016). I don’t trust ICT: Research challenges in cyber security. In S. M. Habib, J. Vassileva, S. Mauw, & M. Mühlhäuser (Eds.), Trust management X (Vol. 473, pp. 129–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-41354-9_9
Hamad, S., & Yeferny, T. (2020). A chatbot for information security (arXiv:2012.00826). arXiv. http://arxiv.org/abs/2012.00826
Hien, H. T., Cuong, P.-N., Nam, L. N. H., Nhung, H. L. T. K., & Thang, L. D. (2018). Intelligent assistants in higher-education environments: The FIT-EBot, a chatbot for administrative and learning support. In Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018 (pp. 69–76). ACM. https://doi.org/10.1145/3287921.3287937
Hoffman, D. L., & Novak, T. P. (2016). Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2840975
Jung, S. (2019). Semantic vector learning for natural language understanding. Computer Speech & Language, 56, 130–145. https://doi.org/10.1016/j.csl.2018.12.008
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1746–1751). Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1181
Kowalski, S., Pavlovska, K., & Goldstein, M. (2013). Two Case Studies in Using Chatbots for Security Training. In R. C. Dodge & L. Futcher (Eds.), Information Assurance and Security Education and Training (Vol. 406, pp. 265–272). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39377-8_31
Langner, B., Vogel, S., & Black, A. W. (2010). Evaluating a dialog language generation system: Comparing the Mountain system to other NLG approaches. In Proceedings of Interspeech 2010 (pp. 1109–1112). International Speech Communication Association. https://doi.org/10.21437/Interspeech.2010-353
Lee, S., Lee, J., Lee, W., Lee, S., Kim, S., & Kim, E. T. (2020). Design of integrated messenger anti-virus system using chatbot service. In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 1613–1615). IEEE. https://doi.org/10.1109/ICTC49870.2020.9289514
Lin, L., D’Haro, L. F., & Banchs, R. (2016). A web-based platform for collection of human-chatbot interactions. In Proceedings of the Fourth International Conference on Human-Agent Interaction (pp. 363–366). ACM. https://doi.org/10.1145/2974804.2980500
McShane, M. (2017). Natural Language Understanding (NLU, not NLP) in Cognitive Systems. AI Magazine, 38(4), 43–56. https://doi.org/10.1609/aimag.v38i4.2745
McTear, M., Callejas, Z., & Griol, D. (2016). The conversational interface. Springer International Publishing. https://doi.org/10.1007/978-3-319-32967-3
Perera, R., & Nand, P. (2017). Recent Advances in Natural Language Generation: A Survey and Classification of the Empirical Literature. Computing and Informatics, 36(1), 1–32. https://doi.org/10.4149/cai_2017_1_1
Pfleeger, C. P., & Pfleeger, S. L. (2012). Analyzing computer security: A threat (2nd ed., intern. ed). Pearson Education International.
Radziwill, N. M., & Benton, M. C. (2017). Evaluating quality of chatbots and intelligent conversational agents (arXiv:1704.04579). arXiv. http://arxiv.org/abs/1704.04579
Ramesh, K., Ravishankaran, S., Joshi, A., & Chandrasekaran, K. (2017). A survey of design techniques for conversational agents. In S. Kaushik, D. Gupta, L. Kharb, & D. Chahal (Eds.), Information, communication and computing technology (Vol. 750, pp. 336–350). Springer Singapore. https://doi.org/10.1007/978-981-10-6544-6_31
Sabbagh, B. A., Ameen, M., Watterstam, T., & Kowalski, S. (2012). A prototype for HI2Ping information security culture and awareness training. In Proceedings of the 2012 International Conference on E-Learning and E-Technologies in Education (ICEEE) (pp. 32–36). IEEE. https://doi.org/10.1109/ICeLeTE.2012.6333397
Verspoor, K., Cohen, K. B., Lanfranchi, A., Warner, C., Johnson, H. L., Roeder, C., Choi, J. D., Funk, C., Malenkiy, Y., Eckert, M., Xue, N., Baumgartner, W. A., Bada, M., Palmer, M., & Hunter, L. E. (2012). A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools. BMC Bioinformatics, 13(1), 207. https://doi.org/10.1186/1471-2105-13-207
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2020). XLNet: Generalized autoregressive pretraining for language understanding (arXiv:1906.08237). arXiv. http://arxiv.org/abs/1906.08237
Yoo, J., & Cho, Y. (2022). ICSA: Intelligent chatbot security assistant using Text-CNN and multi-phase real-time defense against SNS phishing attacks. Expert Systems with Applications, 207, 117893. https://doi.org/10.1016/j.eswa.2022.117893
Zambrano, P., Sanchez, M., Torres, J., & Fuertes, W. (2017). BotHook: An option against cyberpedophilia. In Proceedings of the 2017 1st Cyber Security in Networking Conference (CSNet) (pp. 1–3). IEEE. https://doi.org/10.1109/CSNET.2017.8241994
Zikopoulos, P. (Ed.). (2012). Understanding big data: Analytics for enterprise class Hadoop and streaming data; Learn how IBM hardens Hadoop for enterprise-class scalability and reliability, gain insight into IBM’s unique in-motion and at-rest Big Data analytics platform, learn tips and tricks for Big Data use cases and solutions, get a quick Hadoop primer. McGraw-Hill.
Zimba, A., Chen, H., Wang, Z., & Chishimba, M. (2020). Modeling and detection of the multi-stages of Advanced Persistent Threats attacks based on semi-supervised learning and complex networks characteristics. Future Generation Computer Systems, 106, 501–517. https://doi.org/10.1016/j.future.2020.01.032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thawbaan Adam, Song Emmanuel, Gilles Dusserre, Nasir Baba Ahmed, Zahir Babatunde, Lawan Mohammed Isa, Danladi Ayuba Job
This work is licensed under a Creative Commons Attribution 4.0 International License.