Calcium Salts from the Demineralization of Crab (Scylla serrata) Wastes

Authors

  • Toavina M. Andriamanalina Department of Chemical Engineering, University of Antananarivo, Polytechnic School of Antananarivo, 101 Antananarivo, Madagascar
  • Martial D. Andrianandrasana Department of Terrestrial Ecosystem, Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
  • Christine Ravonizafy Department of Environment and Quality of Life, Centre National de Recherche sur l’Environnement, 101 Antananarivo, Madagascar
  • Edouard R. Andrianarison Department of Chemical Engineering, University of Antananarivo, Polytechnic School of Antananarivo, 101 Antananarivo, Madagascar

DOI:

https://doi.org/10.54536/ajise.v2i1.1273

Keywords:

Crab Waste, Demineralization, Calcium, Salt, Chitosan, Chitin

Abstract

Seafood wastes raise environmental concerns and many studies focus on recycling those wastes into chitosan. However, the environmental impact of that process is underestimated. Indeed, a significant amount of toxic wastes is released, potentially harmful to humans and the environment. This study therefore focuses on reducing of that adverse impact by recycling the waste produced during the first step of the production of chitosan: demineralization. By varying the concentration of the acid while keeping stoichiometric ratios, it was shown that the concentration plays a vital role in the efficiency of the demineralization and the purity of the salts. This effect of the concentration on such reaction is still poorly investigated and this study thus offers a deeper knowledge to the chitosan research. Moreover, it was concluded that calcium salts from the transformation of crab wastes into chitosan can be collected and reused. Nevertheless, studies about recycling waste from the other steps of the chitosan production are needed to reduce this process’s environmental impact even more.

Downloads

Download data is not yet available.

References

Addinsoft, Addinsoft.(2014). XLSTAT statistical and data analysis solution, Long Island, NY, USA. https://www.xlstat.com.

Ahmed, S., & Ikram, S. (2015). Chitosan & Its Derivatives: A Review in Recent Innovations. International Journal of Pharmaceutical Sciences and Research, 6(22), 14−30. https://doi.org/10.13040/IJPSR.0975-8232

Amiri, H., Aghbashlo, M., Sharma, M., Gaffey, M., Manning, L., Basri, S. M. M., Kennedy, J. F., Gupta, V. K. & Tabatabaei, (2022). M. Chitin and Chitosan Derived from Crustacean Waste Valorization Streams can Support Food Systems and the UN Sustainable Development Goals. Nature Food, 3, 822–828. https://doi.org/10.1038/s43016-022-00591-y

An, H., Peters, M., & Seymour, T. (1996). Roles of Endogenous Enzymes in Surimi Gelation. Trends in Food Science and Technology, 7(10), 321-327. https://doi.org/10.1016/0924-2244(96)10035-2

Andriamanalina, T. M., Andrianandrasana, M. D., Raharison, M., & Andrianarison, E. R. (2023). Self-Healing Concrete by Microorganisms in the Altered Pozzolan of Madagascar with Calcium from Crab Wastes. American Journal of Education and Technology, 2(1), 1-9. https://doi.org/10.54536/ajet.v2i1.1061

Asmi, D., & Low, I. (2014). Manufacture of Graded Ceramic Matrix Composites Using Infiltration Techniques. Advances in Ceramic Matrix Composites, 109-140. https://doi.org/10.1533/9780857098825.1.109

Bai, L., Liu, L., Esquivel, M., & Tardy, B. L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, & O. J. (2022). Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem. Rev, 122(13), 11604−11674. https://doi.org/10.1021/acs.chemrev.2c00125

Chen, D., Song, J., Yang, H., Xiong, S., Liu, Y., & Liu, R. (2016). Effects of Acid and Alkali Treatment on the Properties of Proteins Recovered from whole Gutted Grass Carp (Ctenopharyngodon idellus) Using Isoelectric Solubilization/precipitation. Journal of Food Quality, 39, 707-713. https://doi.org/10.1111/jfq.12236

Fadli, A., Drastinawati, Komalasari, Afriani, Y. & Maulana, S. (2017). Demineralization Kinetics of Chitin Isolation from Shrimp Shell Waste. Contemporary Engineering Sciences, 10(29), 1409-1418. https://doi.org/10.12988/ces.2017.79118

Gbenebor, O., Adeosun, S., Lawal, G., & Jun. S.(2016). Role of CaCO3 in the Physicochemical Properties of Crustacean-Sourced Structural Polysaccharides. Materials Chemistry and Physics, 184, 203-209. https://doi.org/10.1016/j.matchemphys.2016.09.043

Jung, W.-J., Jo, G.-H., Kuk, J.-H., Kim, K.-Y., & Park, R.-D. (2005). Demineralization of Crab Shells by Chemical and Biological Treatments. Biotechnology and Bioprocess Engineering, 10(67), 67-72. https://doi.org/10.1007/BF02931185

Muñoz, I., Rodríguez, C., Gillet, D., & Moerschbacher, B. (2018). Life Cycle Assessment of Chitosan Production in India and Europe, The International Journal of Life Cycle Assessment, 23(3), 1151-1160. https://doi.org/10.1007/s11367-017-1290-2

Oh, K.-T.., Kim, Y.-J., Nguyen, V. N., Jung, W.-J., & Park, R.-D. (2007). Demineralization of Crab Shell Waste by Pseudomonas aeruginosa F722. Process Biochemistry, 42, 1069–1074. https://doi.org/10.1016/j.procbio.2007.04.007

Rakotondravelo, F. (2019). Caractérisation et Valorisation des Co-produits de Crabe Scylla serrata en vue de la Culture des Champignons Comestibles et Mychorhiziens. Master Thesis; Faculty of Sciences; Université d’Antananarivo, 1-38.

Ravi Kumar, M. N. V. (2000). A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers, 46(1), 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9

Rawdkuen, S., Sai-Ut, S., Khamsorn, S., Chaijan, M., & Benjakul, S. (2009). Biochemical and Gelling Properties of Tilapia Surimi and Protein Recovered Using An Acid-Alkaline Process. Food Chemistry, 112(1), 112-119. https://doi.org/10.1016/j.foodchem.2008.05.047

Regis, B., Marius, S., Arhaliass, A., Sandrine, B., Karine, L. R., Del Pino, R. J., Jean-Pascal, B., & Raymond, K. (2015). Kinetic Study of Solid Phase Demineralization by Weak Acids in One-step Enzymatic Bio-refinery of Shrimp Cuticles. Process Biochemistry, 50(12), 2215-2223. https://doi.org/10.1016/j.procbio.2015.09.017

Sakata, Y., Shiraishi, S., & Otsuka, M. (2006). Characterization of Dehydration and Hydration Behavior of Calcium Lactate Pentahydrate and its Anhydrate. Colloids and surfaces B: Biointerfaces, 46(3), 135-141. https://doi.org/10.1016/j.colsurfb.2005.10.004

Schmitz, C., Auza, L. G., Koberidze, D., Rasche, S., Fischer, R., & Bortesi, L. (2019). Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects. Marine Drugs, 17(8), 452. https://doi.org/10.3390/md17080452

Vavrusova, M., Liang, R., & Skibsted, L. (2014). Thermodynamics of Dissolution of Calcium Hydroxycarboxylates in Water. Journal of Agricultural and Food Chemistry, 62(24), 5675−5681. https://doi.org/10.1021/jf501453c

Wang, S. L., & Nguyen, V. B. (2019). Production of Potent Antidiabetic Compounds from Shrimp Head Powder via Paenibacillus Conversion. Process Biochemistry, 76, 18-24 https://doi.org/10.1016/j.procbio.2018.11.004

Downloads

Published

2023-02-21

How to Cite

Andriamanalina, T. M., Andrianandrasana, M. D., Ravonizafy, C., & Andrianandrasana, E. R. (2023). Calcium Salts from the Demineralization of Crab (Scylla serrata) Wastes. American Journal of Innovation in Science and Engineering, 2(1), 25–29. https://doi.org/10.54536/ajise.v2i1.1273