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This study demonstrates the critical role of  satellite data in monitoring and evaluating NRM 
interventions in semi-arid, rain-fed agricultural regions. This study evaluates the biophysical 
impacts of  Watershed level interventions in Bandlapalle village, Anantapur district, Andhra 
Pradesh, using time-series satellite data. Landsat-TM data (2006–2022) was utilized for 
seamless temporal analysis, with 2006 as the base year due to the commencement of  
MGNREGA and IWMP projects during this period. The study focused on the analysis of  
Land Use Land Cover (LULC), Vegetation Condition Index (VCI), Normalized Difference 
Water Index (NDWI), and Soil Moisture Index (SMI) across three cropping seasons - Kharif, 
Rabi, and Zaid. LULC analysis shows an increase in agricultural land from 1839.21 ha in 
2006 to 2041.45 ha in 2022, alongside a decrease in scrubland from 464.39 ha to 268.79 
ha, indicating shifts in land use patterns. VCI values improved significantly, reflecting 
healthier vegetation over time, particularly in the Rabi season, where the high vegetation 
class increased from 287.12 ha in 2007 to 1539.11 ha in 2022. NDWI analysis shows an 
overall improvement in water availability, with high NDWI class areas expanding notably 
during the Kharif  season, from 214.78 ha in 2006 to 2046.13 ha in 2021. Similarly, SMI 
analysis indicates enhanced soil moisture levels, especially during the Rabi and Zaid seasons, 
with medium and high moisture areas showing considerable growth. The results reflects the 
positive influence of  watershed management and water harvesting structures, such as check 
dams and farm ponds, on improving land use patterns, vegetation health, water availability, 
and soil moisture retention.
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INTRODUCTION
Roughly 80% of  the global agricultural land is under 
rain-fed agriculture, with over 60% in South Asia alone 
(Wani et al., 2009). These rainfed areas are identified with 
generally low yield levels and high on-farm water losses 
(Rockstrom et al., 2003). Their water demands are further 
exacerbated by the uncertainty in rainfall occurrences 
and its distribution in a growing population and changing 
climate context (Mall et al., 2017). Climate change is 
estimated to reduce agricultural income by 15-25 percent. 
Rain-fed arable land in the drylands is also subject to; a 
range of  degradation hazards (Stroosnijder, 2007). Rainfed 
croplands’ main land degradation problems, especially in 
central Asia, are soil erosion and soil fertility depletion 
(Mirzabaev, 2016). Ensuring water availability is critical for 
developing these dryland regions for food production and 
building resilience to cope with future water-related risks 
and uncertainties (Rockstrom et al., 2003).
India has 60% of  the total geographical area under the 
rainfed area contributing 44 percent of  food grains and 
supporting 40 percent of  the population, the largest in 
the world, both in terms of  area and value of  production 
(Sharma et al., 2010). 27.7% of  its total geographic 
area is also identified as degraded land (Sreenivas et al., 
2021). Given the complex and diverse factors underlying 
watershed development, such as the social, ecological, 

institutional, and economic factors, besides the regional 
variations, the rain-fed agriculture area development 
in India presents a wide range of  challenges as well 
opportunities (Venkateswarlu, 2010). Considering the 
strong link between land and water productivity, it is 
thus necessary to ensure adequate mitigation measures 
for preventing land degradation in addition to water 
management in rainfed areas. In biophysical terms, 
watershed management involves blending productive and 
protective uses of  the land and water resources in an area 
delineated by watershed boundaries (Hamilton & Pearce, 
1986). The role of  watershed development is widely 
studied in terms of  improvement and livelihoods and 
successfully controlling soil erosion and runoff  reduction 
(Kerr et al., 2002) by a large number of  researchers 
from both social sciences and science (Palanisami & 
Suresh, 2014). The conventional approaches to studying 
the impacts on soil and water aspects are mainly rapid 
reconnaissance surveys, study area profiling, and 
household surveys. The studies deploying automatic 
runoff  recorder and guging stations are instrumentation 
intensive, and have less diligent efforts in terms of  time 
and cost. Another, limitation of  these methods is that the 
rigor of  the individual reports varies with the capacities 
and understanding of  the organizations involved (Wani 
et al., 2009). Thus, more evidence-based scientific studies 
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are needed to address the bio-physical impacts linkable to 
enhancing ecosystem services.
Water, vegetation, and soil represent the three most crucial 
bio-physical components of  the terrestrial environment 
and an important indicator of  ecosystem health and 
ecosystem services. These features or biophysical 
characteristics are essential for studying the watershed’s 
resource availability, utilization, and management 
(Rapport, 2001). The study of  spatial arrangement 
of  patches with remote sensing-derived information 
provides a scale-explicit context and contributes to the 
impacts of  watershed interventions. Vegetation Indices 
(VIs) are effective algorithms for quantitative and 
qualitative evaluations of  vegetation cover, vigor, and 
growth dynamics, among other applications (Xue & Su, 
2017). Time-series satellite data analysis further provides 
a basis for monitoring the watershed level changes in the 
bio-physical variables and their quantification. 
Several studies have analyzed time-series satellite data 
for monitoring the land use land cover changes in the 
watersheds (Singh et al., 2021; Munoth et al., 2020), their 
relationship with the groundwater quality (Maurya et al., 
2021), vegetation condition (Kumar et al., 2014) and soil 
erosion (Mekuriaw, 2019). Thakkar et al. (2017) used time 
series data to study the watershed management programs 
on land use/land cover dynamics using remote sensing 
and GIS in the part of  Khan-Kali watershed in the semi-
arid region Gujarat, India. Halder et al. (2021) carried out 
the monitoring and impact assessment of  the Narwa 
project in terms of  LULC and vegetation in Kasdol block 
in Baloda Bazar district, Chhattisgarh. Reddy et al. (2022) 
used satellite images and GIS tools for the evaluation of  

nine watershed projects implemented under the Pradhan 
Mantri Krishi Sinchayee Yojana (PMKSY) in Chittoor 
District of  Andhra Pradesh.The popularity of  time-series 
analysis in various domains is substantially increased in 
recent years due to open access, freely available satellite 
images, and cloud computation platforms, such as the 
Google Earth Engine (GEE) (Gorelick et al., 2017). 
This study thus aims to evaluate the effects of  ongoing 
watershed development interventions on three critical 
biophysical resources viz, water, and soil by utilizing 
spectral indices derived from time-series satellite images, 
in a semi-arid village in Andhra Pradesh, India.

Study Area
The study is carried out in the Bandlapalle village is located 
between 14°9‘2.2 N latitude and 77°43‘53.64 E longitude, 
having total geographical area of  2261 hectares (Figure 
1). It is also one of  the four villages forming a part of  
the Anantapur-IWMP-33/2010-11 watershed project in 
KothacheruvuMandal in the Anantapur district of  Andhra 
Pradesh State, India.As per the 2011 census, the total 
population of  the village is 3895. The region is formed 
byhard-rock terrain of  semi-arid climatic conditions with 
high runoff  and evapotranspiration potentials. Due to the 
influence of  geological structures, the drainage pattern 
is dendritic, rectangular to sub-rectangular. The area is 
drained Vengaperu, a tributary of  the lower Thungabadra 
River and by few other ephemeral streams. The average 
rainfall in the Mandal is 622 mm. The normal temperature 
ranges from 15ºC in December-January to 40º C in May-
June. The major agricultural commodity in the study area is 
paddy, groundnut and red gram.

Figure 1: Study Area-Location Map
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MATERIALS AND METHODS
Satellite Data
While selecting the satellite data major considerations 
made included, seasonal represenation of  cahnges, 
selection of  base year and the seamless availability for 
temporal comparison. The rainfed regions across the 
globe present a juxtaposition of  land use land cover 
patches predominantly agriculture under different 
cropping stages. Their temporal nature in a given 
region manifests as intra and interannual processes and 
changes (Crews-Meyer, 2004), as influenced by prevailing 
agriculture practices and cropping cycles depending 
on the agro-ecological, agro-climatic conditions. Thus, 
selection of  satellite data also taken into consideration the 
coverage of  three cropping season’s viz., Kharif  (June/
July-September/October), Rabi (November/December-
February/March), and Zaid (April-May) as prevalent 
in India. The selection of  base year for monitoring the 
impacts of  NRM works is taken up as 2006 as they are 
majorly taken up under Mahatma Gandhi National Rural 
Employment Guarantee Act (MGNREGA) and PMKSY, 
earswhile Integrated Watershed Development Project 
(IWMP) since 2006 and 2009 onwards, respectively. 
Over 758 water conservation water harvesting structures 
(SWCS), mainly farm ponds, have been created in 
Bandlapalli under the MGNREGA, and under IWMP 58 
such works; mainly the check dams have been created. 

Since the MGNREGA was launched in 2006, with the 
peak number of  SWCS created in 2016-17, the selection 
of  the base year and subsequent years for evaluating the 
biophysical impacts of  these interventions using time-
series satellite data has been considered accordingly. 
Although Sentinel offers better spatial resolution (10 
meters), its absence during earlier periods, particularly as 
our study’s base year is 2006, restricts its use for historical, 
seamless observations. Therefore, we used Landsat-TM, 
which ensures a consistent comparison with recent years, 
facilitating seamless temporal analysis (Li et al., 2020).

Land Use Land Cover Mapping (LULC)
LULC mapping has been carried outfor 2006, 2016 and 
2021 using the Landsat-TM satellite data. We used on-
screen visual interpretation-based mapping and  detection. 
It involves manually comparing satellite from different 
time periods to identify changes in land cover and land 
use in a given area. Visual change detection is particularly 
useful in regions with high spatial heterogeneity or 
in cases where historical data lacks the resolution or 
consistency needed for automated methods (Lu et al., 
2004). Although, it is considered to be time-consuming 
and may be prone to human error or subjectivity it 
remains particularly useful for identifying subtle changes 
that automated algorithms might miss (Janga et al., 2023).

Table 1: Satellite data used
Satellite Sensor Date of  Acquisition
Landsat-5 TM 01-Sep-06
Landsat-5 TM 08-Feb-07
Landsat-5 TM 29-Apr-07
Landsat-8 OLI 12-Oct-15
Landsat-8 OLI 01-Feb-16
Landsat-8 OLI 21-Apr-16
Landsat-8 OLI 18-Sep-18
Landsat-8 OLI 25-Feb-19
Landsat-8 OLI 30-Apr-19
Landsat-8 OLI 09-Aug-21
Landsat-8 OLI 17-Feb-22
Landsat-8 OLI 06-Apr-22

Spectral Indices
Spectral indices are the equations derived from satellite 
data that combines pixel value from two or more bands 
in a multispectral image. They are used to highlight 
particular biophysical phenomena or features depending 
on their interaction with a particular wavelength with the 
electromagnetic spectrum as manifested in the satellite 
data, individual bands. Aligning with to study requirement 
of  studying the impacts of  watershed interventions in the 
study area, the spectral indices used are:

Vegetation Condition Index 
The Vegetation Condition Index (VCI) relates the current 
decadal Normalized Difference Vegetation Index (NDVI) 

to its long-term minimum and maximum, normalized by 
the historical range of  NDVI values for the same decade 
(Kogan, 1990). It is derived as follows:
VCI = (NDVI-NDVImin)/(NDVImax- NDVImin) ...(1)
The NDVI is the most basic and widely used spectral 
index for assessing vegetation condition, mainly in 
terms of  its vigor and health. It quantifies vegetation by 
measuring the difference between the near-infrared band 
which vegetation strongly reflects and the red wavelength 
band which vegetation absorbs (Rouse, 1974). It is 
calculated as follows:
NDVI= (NIR-R)/(NIR+R)		           ...(2)
The table 2 shows the statistics of  input NDVI Images from 
2006/7 to 2021/22 across the seasons as used in the study. 
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Normalized Difference Water Index 
The Normalized Difference Water Index (NDWI) is 
known to be strongly related to plant water content and 
is therefore considered a reliable proxy for plant water 
stress. Different studies have demonstrated its usefulness 
for drought monitoring and early warning (Gu et al., 2007; 
Ceccato et al., 2002). It is computed using near-infrared 
(NIR) and short-wave infrared (SWIR) reflectance (GAO, 
1996).
NDWI = (NIR-SWIR)/(NIR+SWIR)	          ...(3)

Soil Moisture Index 
Soil moisture is a critical land surface variable affecting 
various climatological, agricultural, and hydrological 
processes.It influences the exchange of  water and energy 
fluxes at the land surface/atmosphere interface. It can 

be derived using various methods, including in situ 
monitoring, remote sensing, and numerical modeling 
(Wang & Qu, 2009). For this study, we calculated soil 
moisture index (SMI) using the Land Surface Temperature 
(LST) as a proxy (eq 4). Determining LST is complex 
as it is more sensitive to changes in vegetation density 
and captures additional information on the biophysical 
controls on surface temperatures, such as surface 
roughness and transpirational cooling (Oyler et al., 2016). 
We followed the method given by Janani et al. (2024) for 
computing LST. The output map was classified into three 
class viz. 0 to 0.25: Low; 0.25 to 0.5: Medium; 0.5 to 1: 
High.
SMI = (LSTmax-LST)/(LSTmax-LST)	          ...(4)
The table 3 shows the statistics of  input LST images from 
2006/7 to 2021/22 across the seasons as used in the study. 

Table 2: NDVI statistics from 2006/7 to 2021/22 across the seasons
Kharif
 Year Min Max Mean SD 
2006 0.02 0.75 0.27 0.08
2015 -0.08 0.73 0.46 0.09
2021 0.14 0.75 0.50 0.10
Rabi
 Year Min Max Mean SD 
2007 0.05 0.60 0.17 0.08
2016 0.05 0.80 0.32 0.11
2022 -0.04 0.66 0.31 0.08
Zaid
 Year Min Max Mean SD 
2007 0.02 0.53 0.12 0.05
2016 0.07 0.69 0.23 0.08
2022 -0.02 0.64 0.28 0.09

Table 3: LST statistics (in Celsius) from 2006/7 to 2021/22 across the seasons
Kharif
 Year Min Max Mean SD 
2006 24.97 33.66 30.57 1.26
2015 21.25 30.39 26.24 1.18
2021 21.20 30.30 26.38 1.29
Rabi
 Year Min Max Mean SD 
2007 24.54 36.04 32.15 1.75
2016 17.72 36.04 29.08 2.92
2022 23.53 34.59 29.72 1.85
Zaid
 Year Min Max Mean SD 
2007 30.82 39.92 36.87 1.28
2016 33.19 42.96 40.33 1.38
2022 29.31 42.48 37.39 2.35
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RESULTS AND DISCUSSION
Results
Land Use Land Cover (LULC)
The LULC analysis for the years 2006, 2015, and 2022 
demonstrates notable changes across different classes in 
the study area (Figure 2, Table 4). Agricultural land, which 
accounted for 1839.21 ha in 2006, increased to 1906.14 
ha in 2015 and further expanded to 2041.45 ha by 2022, 
reflecting a steady rise in cultivated areas over time. 
Forest cover, however, remained constant throughout the 
period, occupying 66.44 ha, indicating the preservation 
of  forest areas. Similarly, river areas remained unchanged 
at 26.16 ha across the years. The area classified as rocky 
decreased from 82.41 ha in both 2006 and 2015 to 61.06 

ha in 2022, potentially due to land use conversion or 
erosion processes. Scrubland experienced a significant 
decline from 464.39 ha in 2006 to 397.45 ha in 2015, and 
further reduced to 268.79 ha by 2022, suggesting land 
degradation or a shift in land use patterns. Settlement 
areas showed a slight increase from 34.63 ha in 2006 and 
2015 to 37.24 ha by 2022, reflecting urban growth. Water 
bodies exhibited a notable expansion from 3.62 ha in 2006 
and 2015 to 15.71 ha by 2022, likely due to the creation 
of  artificial reservoirs or the restoration of  natural water 
bodies. These LULC changes indicate dynamic land use 
patterns, with expansion in agricultural, settlements and 
shifts in natural land cover being the dominant trends 
over the 16-year period.

Table 4: Change in Land Use Land Cover area (in ha)
LULC Class Year- 2006 2015 2022
Agriculture 1839.21 1906.14 2041.45
Forest 66.44 66.44 66.44
River 26.16 26.16 26.16
Rocky 82.41 82.41 61.06
Scrub 464.39 397.45 268.79
Settlements 34.63 34.63 37.24
Waterbody 3.62 3.62 15.71
Total Geographic Area 2516.85

Figure 2: False Color Composite Image & Land Use Land Cover Maps (2006, 20015 and 2022)
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Vegetation Condition Index (VCI)
The Vegetation Condition Index (VCI) from 2006/07 
to 2021/22 across the Kharif, Rabi, and Zaid seasons 
show an overall improvement in vegetation health over 
time (Figure 3, Table 5). In the Kharif  season, the mean 
VCI increased from 0.35 in 2006 to 0.68 in 2015, though 
it slightly decreased to 0.57 in 2021. Similarly, the Rabi 
season shows a consistent rise in the mean VCI from 
0.21 in 2007 to 0.59 in 2022, indicating better vegetation 
conditions. The Zaid season also reflects an improvement, 
with the mean VCI increasing from 0.20 in 2007 to 0.38 
in 2022 (Table 5).

Table 5: VCI image statistics from 2006/7 to 2021/22 
across the seasons
Kharif
 Year Min Max Mean SD 
2006 0 1 0.35 0.11
2015 0.07 1 0.68 0.11
2021 0 1 0.57 0.17
Rabi
 Year Min Max Mean SD 
2007 0 1 0.21 0.14
2016 0 1 0.35 0.14
2022 0 1 0.59 0.14
Zaid
 Year Min Max Mean SD 
2007 0 1 0.20 0.09
2016 0 1 0.26 0.12
2022 0.02 1 0.38 0.15

Table 6: VCI Classes Area (in ha) from 2006/7 to 
2021/22 across the seasons
Kharif
Year Low Medium High Very 

High
2006 7.84 1409.14 1050.16 49.49 
2015 0.87 279.53 1218.73 1017.50 
2021 0.95 144.91 1534.95 835.82 
Rabi
Year Low Medium High Very 

High
2007 339.84 1820.72 287.12 68.95
2016 3.38 1337.23 1022.77 153.25
2022 0.78 683.15 1539.11 293.58 
Zaid
Year Low Medium High Very 

High
2007 78.61 2235.07 189.84 13.11
2016 50.50 1949.47 472.35 44.32
2022 0.52 626.69 1641.66 247.75

The VCI class-wise area across the Kharif, Rabi, and 
Zaid seasons indicates a trend of  decreasing areas in the 
low and medium classes, with a corresponding increase 
in the high and very high classes over the years (Table 
6). In the Kharif  season, the low class area decreased 
dramatically from 7.84 ha (0.31%) in Sep 2006 to 0.95 ha 
(0.04%) in Aug 2021, while the high class area increased 
significantly from 1050.16 ha (41.73%) to 1534.95 ha 
(60.99%). Similarly, in the Rabi season, the low class area 
dropped from 339.84 ha (13.50%) in Feb 2007 to 0.78 ha 
(0.03%) in Feb 2021, with the high class area rising from 
287.12 ha (11.41%) to 1539.11 ha (61.16%). The Zaid 
season follows the same pattern, with the low class area 
decreasing from 78.61 ha (3.12%) in Apr 2007 to 0.52 ha 

Normalized Difference Water Index (Normalized 
Difference Water Index)
The Normalised Difference Water Index from 2006/07 
to 2021/22 across the Kharif, Rabi, and Zaid seasons 
also showed an overall improvement over time (Figure 
4, Table 7). The NDWI statistics for Kharif, Rabi, and 
Zaid seasons across the years reveal notable trends 
in water content in the studied region (table 9). The 
Kharif  season demonstrates a positive trend, with the 
mean NDWI rising from -0.03 in 2006 to 0.2 in 2021, 
suggesting enhanced water content during this period. In 
the Rabi season, the mean NDWI shows a steady increase 
from -0.13 in 2007 to -0.02 in 2021, indicating a gradual 
improvement in water availability during this season. In 
contrast, the Zaid season shows a slight improvement in 
mean NDWI, moving from -0.15 in 2006 to -0.08 in 2021. 
Across all seasons, the standard deviation (SD) values 
indicate increasing variability over the years, reflecting 
more fluctuating water conditions. These trends may be 
influenced by various factors such as changing climatic 
patterns and irrigation practices.

(0.02%) in Apr 2022, and the high class area increasing 
from 189.84 ha (7.54%) to 1641.66 ha (65.23%).
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Figure 3: VCI maps from 2006/7 to 2021/22 across the seasons

Kharif  
Year Min Max Mean SD 
2006 -0.19 0.44 -0.03 0.08
2015 -0.14 0.45 0.17 0.1
2021 -0.07 0.46 0.2 0.1
Rabi
Year Min Max Mean SD 
2007 -0.26 0.38 -0.13 0.1

2016 -0.23 0.59 -0.04 0.12
2022 -0.65 0.55 -0.02 0.16
Zaid 
Year Min Max Mean SD 
2006 -0.24 0.3 -0.15 0.05
2015 -0.24 0.46 -0.1 0.08
2022 -0.22 0.42 -0.08 0.1

Table 7: NDWI image statistics from 2006/7 to 2021/22 across the seasons

The analysis of  area under NDWI classes also shows 
significant changes across the Kharif, Rabi, and Zaid 

seasons (Table 8). In the Kharif  season, the “Low” NDWI 
class dropped from 171.14 ha (6.59%) in 2006 to just 1.52 
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ha (0.06%) in 2015, disappearing completely by 2021. The 
“Medium” class also declined from 2120.97 ha (81.64%) 
in 2006 to 460.77 ha (18.36%) by 2021, while the “High” 
class increased from 214.78 ha (8.27%) to 2046.13 ha 
(81.64%) over the same period, reflecting improved water 
retention. In the Rabi season, the “Low” class reduced 
from 1919.07 ha (72.91%) in 2007 to 781.68 ha (30.46%) 
by 2022. Meanwhile, the “Medium” class grew from 467.47 
ha (17.76%) to 1316.40 ha (51.31%), and the “High” class 

expanded from 120.36 ha (4.57%) to 408.81 ha (15.93%), 
indicating improved water availability. For the Zaid season, 
the “Low” class dropped from 2231.49 ha (84.76%) in 
2007 to 1660.83 ha (64.00%) by 2022. The “Medium” class 
initially rose from 262.35 ha (9.96%) in 2007 to 754.95 ha 
(28.66%) in 2016 but decreased to 570.39 ha (21.98%) by 
2022. The “High” class saw a substantial increase from 
13.05 ha (0.50%) to 275.67 ha (10.62%), reflecting better 
water conditions in this off-season.

Kharif
 Year Low Medium High
2006 171.14 2120.97 214.78
2015 1.52 659.72 1845.66
2021 0.00 460.77 2046.13
Rabi
Year Low Medium High
2007 1919.06 467.47 120.35

Table 8: NDWI Classes Area (in ha) from 2006/7 to 2021/22 across the seasons

2016 939.95 1238.60 328.33
2022 781.68 1316.39 408.81
Zaid
Year Low Medium High
2007 2231.50 262.35 13.06
2016 1668.34 754.95 83.60
2022 1660.83 570.39 275.67

Figure 4: NDWI maps from 2006/7 to 2021/22 across the seasons
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Discussion
The transformation of  rain-fed rural landscapes in 
India, particularly through watershed interventions, is a 
critical area of  study given the predominance of  rain-
fed agriculture in the region. This study underscores the 
importance of  spatio-temporal evidence in evaluating 
the effectiveness of  watershed management programs 
in transforming these landscapes. The use of  spatio-
temporal data, particularly from satellite sources like 
Landsat and Sentinel-2, has provided invaluable insights 
into the changes in vegetation and land use patterns over 
time. The VCI and NDVI reveal significant improvements 
in vegetation health across the Rabi, Kharif, and Zaid 
seasons from 2007 to 2021. These indices have shown an 
overall positive trend, indicating successful implementation 
of  watershed interventions and better agricultural practices 
The increase in their values across seasons highlights the 
enhanced vigor and productivity of  vegetation, which is 
a direct result of  improved water management and soil 
conservation practices (Singh et al., 2021). 

The NDWI data further support the positive impact 
of  watershed interventions on water availability. The 
increasing variability in water content, as indicated by the 
rising standard deviation values across seasons, suggests 
that while overall water availability has improved, there 
are fluctuations that may be attributed to seasonal climatic 
variations and differential water retention capacities of  
the soil (Kundu et al., 2020). The soil moisture index 
derived from LST data corroborates these findings, 
showing a shift towards higher soil moisture levels, which 
is critical for sustaining agriculture in semi-arid regions 
(Naga Rajesh et al., 2023). .
Moreover, farm pond interventions have contributed 
to temperature stabilization and moderation in the local 
microclimate. The relatively stable variation in mean 
temperatures across most seasons suggests that these 
ponds help buffer temperature fluctuations by improving 
moisture retention (Riley et al., 2018). Notably, years 
like Rabi 2016 and Zaid 2022 saw higher temperature 
variability, possibly due to external factors. Over time, 

Table 9: SMI class area (in ha) from 2006/7 to 2021/22 across the seasons
Kharif
Year Low Medium High
2006 659.90 1411.90 435.09
2015 94.57 1742.83 669.49
2021 278.05 1600.25 628.59
Rabi
Year Low Medium High
2007 898.29 1286.80 321.79
2016 462.59 1551.46 492.84
2022 330.57 1297.18 879.13
Zaid
Year Low Medium High
2007 603.56 1590.05 313.27
2016 466.93 1645.06 394.90
2022 620.78 1246.88 639.23

Soil Moisture Index (SMI)
Temporal variation in the soil moisture index from 
2006/07 to 2021/22 is presented in Figure 5 and Table 
9. During the Kharif  season, in 2006, 659.90 ha (31%) of  
the area had low moisture, 1411.90 ha (66%) had medium 
moisture, and 435.09 ha (20%) had high moisture. By 
2015, the low moisture area dropped to 94.57 ha (4%), 
while the medium moisture area increased to 1742.83 
ha (73%), and the high moisture area rose to 669.49 
ha (28%). In 2021, 278.05 ha (10%) had low moisture, 
1600.25 ha (61%) had medium moisture, and 628.59 ha 
(24%) had high moisture.For the Rabi season, in 2007, 
898.29 ha (35%) of  the area had low moisture, 1286.80 
ha (51%) had medium moisture, and 321.79 ha (13%) 
had high moisture. By 2016, the low moisture area 
decreased to 462.59 ha (17%), while medium moisture 

rose to 1551.46 ha (57%) and high moisture increased to 
492.84 ha (18%). In 2022, low moisture covered 330.57 
ha (13%), medium moisture accounted for 1297.18 ha 
(52%), and high moisture expanded to 879.13 ha (35%). 
In the Zaid season, in 2007, 603.56 ha (25%) of  the area 
was under low moisture, 1590.05 ha (65%) under medium 
moisture, and 313.27 ha (13%) under high moisture. By 
2016, the low moisture area slightly decreased to 466.93 ha 
(18%), medium moisture increased to 1645.06 ha (63%), 
and high moisture covered 394.90 ha (15%). In 2022, 
low moisture accounted for 620.78 ha (28%), medium 
moisture for 1246.88 ha (56%), and high moisture for 
639.23 ha (29%). The SMI results thus indicate a general 
shift towards higher moisture areas in recent years, 
especially in the Rabi and Zaid seasons.
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Figure 5: SMI maps from 2006/7 to 2021/22 across the seasons 

there’s a slight cooling trend in Kharif  and Rabi seasons, 
with mean temperatures decreasing, likely due to the 
cooling effect of  farm ponds. Additionally, the presence 
of  these ponds has contributed to a more regulated 
microclimate, particularly in the Rabi and Zaid seasons. 
The LULC analysis shows only a slight increase in 
agricultural areas, which could be due to the conversion 
of  scrubland into farmland as water availability improved. 
The dominance of  agriculture in the study area, with 78% 
coverage, reflects the successful transition of  marginal 
lands into productive agricultural zones. These findings 
suggest that while the overall increase in agricultural land 
may be modest, the quality and productivity of  these 

lands have significantly improved, contributing to better 
livelihoods for the rural population.

CONCLUSION
This study demonstrates the effectiveness of  watershed 
interventions in transforming rain-fed rural landscapes 
in India. The use of  spatio-temporal data and spectral 
indices has provided robust evidence of  improvements 
in vegetation health, water availability, and land use 
patterns. These changes are crucial for enhancing 
agricultural productivity and building resilience against 
climate change in rain-fed regions. Future studies should 
focus on integrating more advanced remote sensing 
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technologies and ground-truthing methods to further 
refine the understanding of  these transformations and 
guide policy decisions for sustainable rural development.
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