

American Journal of Smart Technology and Solutions (AJSTS)

ISSN: 2837-0295 (ONLINE)

VOLUME 4 ISSUE 2 (2025)

PUBLISHED BY
E-PALLI PUBLISHERS, DELAWARE, USA

The Rise of AI in Academia: Adaptation Strategies for Transforming Higher Education

Muhammad Ahmed Khan^{1*}, Muhammad Jehangir¹, Xiaohui wang²

Article Information

Received: May 12, 2025

Accepted: June 16, 2025

Published: August 26, 2025

Keywords

AI Tools, Artificial Intelligence, Higher Education, Modern Technology

ABSTRACT

The rise in integration of Artificial Intelligence (AI) tools in different sectors has generated a substantial impact in their prospective applications in the academic sector. This study analyzes the interest in adopting AI technologies in post-secondary education, mainly focusing on developing countries. It assesses the benefits, complications, and ethical considerations linked with the usage of AI in academic practices, including teaching, training, learning, and research. By conducting a thorough review of existing literature, the work highlights key benefits of AI adoption, for instance enhanced educational experiences, possibilities for personalized learning, and optimized administrative efficiency. Moreover, the study responds to potential challenges, such as biases in AI systems, threats to social engagement and critical thinking, and the negative impact on creativity within academic environments. To efficiently leverage AI's advantages while maintaining fundamental educational values, the study proposes strategic ways for successful AI integration. Also, the paper underscores the significance of considering the distinctive context of developing nations, especially the issues related to limited resources and the necessity to make assure equal availability to AI technologies. By addressing these challenges, the study aims to give a roadmap for effectively and responsibly adopting AI technologies into higher education systems.

INTRODUCTION

The use of AI technologies plays a vital role in the education sector around the globe. Recently, its usage has increased significantly not only in the education system of the well-developed countries but also in developing countries (Abuhmaid, 2020; Alordiah *et al.*, 2023). The issues like congested classrooms, absence of practical demonstrations and lack of other basic teaching facilities confronted by higher education sector are somehow tackled with the emergence of AI tools (Brink & Ohei, 2019; Ocen *et al.*, 2025b; Pierce & Cleary, 2016). However, most of the developing nations still face some challenges in their higher education sector which requires attention. To effectively utilize the artificial intelligence technologies, measures should be implemented to ensure easy access to technology, better internet connection and modify technical infrastructure of the education sector (Asad *et al.*, 2021). The successful implementation of AI technologies in the higher education system of developing countries has the potential to enhance the teaching and learning process and it promises to improve the quality of the education. However, the use of AI technologies may result in disturbance in the cultural, social, and linguistic needs of some of the developing nations and therefore its adoption becomes challenging (Adejo & Connolly, 2017; Asad *et al.*, 2021).

Therefore, this work aims to study the viability of incorporating AI technology into the sector of higher education in less developed countries, emphasizing

on whether its integration should be accepted or reconsidered. It aims to identify and examine the potential benefits, issues, and ethical considerations associated with the implementation of AI technologies in these regions. Moreover, the research aims to support these developing countries in implementing to the expanding use of AI technologies within academics. By addressing these challenges, the work contributes to the wider academic arena and gives critical insights for educators and policymakers in third world countries on the proper incorporation of AI technologies into their higher education.

Understanding AI Tools Usage In Higher Education

AI tool are computer-based programs that utilize AI techniques, such as data analytics, machine learning and natural language processing to support different research, instructional, administrative and educational tasks in higher education (Paquette *et al.*, 2018; Pikhart, 2020). These techniques include natural language generation, deep learning, and natural language understanding, among others. Developed to improve human capabilities, these tools aim to deliver particularly personalized learning experiences for both teachers and students while enhancing the overall efficiency of higher educational institutions in their regular activities (Dankbaar & de Jong, 2014; Marcolin *et al.*, 2021). AI-powered platforms facilitate students to participate in more personalized learning by utilizing teaching and content methods to

¹ College of Computer and Information Engineering, Nanjing Tech University, P. R., China

² School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R., China

* Corresponding author's e-mail: mahmednjtech@gmail.com

align with their individual needs. Adapting these AI tools improve students' performance in education by offering tailored guidance, assessments, feedback, and providing them make progress steadily in their studies. Exponentially, AI voice-based assistants and chatbots are being used as information providers and virtual advisors (Buerck, 2014; Dankbaar & de Jong, 2014). These virtual assistants can give answers on a broad range of academic inquiries, such as questions about enrollment procedures, campus services, course materials and other academic matters, giving responses on time that enhance accessibility and efficiency. AI algorithms also help to automate the evaluation and grading of student examinations, quizzes and assignments. These systems evaluate student responses and generate feedback on the basis of predefined criteria (Haiguang *et al.*, 2020; Pikhart, 2020).

Similarly, the AI automation helps teachers in saving their time by automated grading systems, allowing them to concentrate more on teaching activities. Furthermore, artificial intelligence data analytics, models and techniques are applied to large amount of student data, including behavioral patterns, demographic details and academic performance. Predictive analytics assist in identifying patterns and trends, providing valuable insights in the development of students, need for early intervention and potential challenges (Falebita & Kok, 2024; Gordes & Waller, 2019; Marcolin *et al.*, 2021). This permits academic institutions to provide targeted support, contributing to make better the student outcomes. AI algorithms also interpret learning behavior, performance data and student preferences to recommend appropriate learning resources, like notes, multimedia materials, textbooks based on individual needs. This encourages a more customized and self-directed learning experience. Moreover, AI-supported language processing tools help language translation and learning. These tools provide automated speech recognition, language assessments, translation services and speech recognition which help students to learn new languages and improve their communication skills (Ranalli *et al.*, 2017). Overall, these modern tools are transforming higher education by streamlining administrative tasks, improving learning experiences and giving valuable insights to increase institutional efficiency.

Integration of AI Tools In Academic Institutions

The integration of AI tools in higher education sector has the capability to transform research, learning, administrative and teaching processes. AI tools have also the potential to fulfill students' individual learning preferences and needs, offering flexible and personalized experiences that motivate students and improve their learning skills, academic performance and engagement. These advancements are particularly advantageous for many underdeveloped countries facing difficulties with inadequate educational systems (Alordiah & Agbajor, 2014; Alordiah *et al.*, 2023). Also, AI technologies can potentially automate tasks for researchers and

administrators which allow them to emphasize on higher-value activities, for instance, engaging in research, providing student-oriented instructions and mentoring students (Su & Yang, 2022).

Moreover, the main significance of AI tools is its contribution in bridging the education gap, particularly in urban and rural areas. AI-powered virtual classrooms, mobile learning applications and other platforms produce high-quality educational materials, which are easily accessible irrespective of their location or physical constraints (Abuhmaid, 2020). Additionally, AI tools utilizing data analytics can easily outline student performance and identify trends. This data-driven approach facilitates the administrators and educators to make decisions based on real time data relevant to curriculum design, teaching methodologies and directed student assistance (Tan *et al.*, 2021). The AI tools also help as invaluable resources for instructors. Virtual assistants, AI tutoring systems and chatbots present real-time guidance, access and support to educational materials, improving the capability of educators and enhancing their continuous professional development. By integrating AI technologies, higher academic institutions can reside at the forefront of technological developments and continue delivering innovative learning environments (Tan *et al.*, 2021).

Research Studies and Examples Showcasing Successful AI Tool Integration In Higher Education Massachusetts Institute of Technology (MIT)

The university implemented "MIT Assist," an advanced virtual assistant backed by AI, to help students with weaknesses in their academic journey (Holstein, 2019). The tool can recognize speech, process natural language and give AI-driven analysis to help students with auditory and visual impairments. MIT Assist is powered to give services like real-time transcription, students' guidance through lecture materials. It can adapt content delivery according to the specific needs of the students, helping them in their learning process. The tool has generated a 25% increase in learning success rates for disable students (Dritsas *et al.*, 2025).

University of Toronto (U of T)

The University of Toronto successfully applied an AI-driven tool, "AI Tutor," in the department of computer science to help students with coding in various exercises. The AI Tutor gives real-time feedback on the code submission of students, identifies if there are errors, and provides hints to make it improve (Huang *et al.*, 2023). These types of tools use machine learning and natural language processing to examine students' generated code and communicate its solutions. The implementation of AI Tutor led enhanced student coding proficiency by almost 20%, in their learning process (Ocen *et al.*, 2025b).

University of Cambridge

The Cambridge University introduced an AI tool based

on machine learning-based improving retention rates by 14% to 15% and encouraging greater student engagement (Tyson, 2024). called “Learning Companion” to increase the learning experience in humanities courses. The tool checks student responses and gives suggestions for further personalized readings, along with tips to enhance critical thinking skills. The tool leverages advanced algorithms to get familiar to the learning pace of a student,

University of California, Berkeley

The University of California developed an AI-based analytics tool known as “EduBrain” is used to examine the performance of students in real-time and give personalized learning pathways (Holstein, 2019). EduBrain gathers data from students’ engagements with online courses, classifies areas where students face difficulties, and tailors feedback and surplus resources to assist them overcome those difficulties. The tool has displayed a 30% enhancement in student findings by adapting the course content to students’ specific learning needs (Ocen *et al.*, 2025a).

Concerns and Challenges In Adaptation of AI Tools In Higher Education

Some of the higher educational institutions and people may have the view that adapting AI tools in education should be resisted (Cukurova *et al.*, 2020). Whereas, AI technologies deliver numerous potential advantages, there are also reasonable reasons and concerns for hesitation. The primary concern is diminishing the human role in education by overreliance on AI tools which could reduce the importance of communication directly, proper mentoring, and the development of emotional and social skills (Ocen *et al.*, 2025b; Sætra, 2020; Spector & Ma, 2019). Another important concern is the possibility of displacement of human jobs or the undermining certain roles in higher educational sector (Goel & Polepeddi, 2018; Holm & Lorenz, 2022). For example, increase in grading systems automation could reduce the necessity for human graders, raising questions on the future of teachers, their assistants and other educational related staff (Gibbs, 2022). Moreover, AI systems depend on algorithms that can involuntarily promote biases present in the available training data. This can cause issues of accuracy, fairness, and the possibility for discrimination, mainly when AI is used in student evaluations and taking decisions for admissions (Barabas, 2020). Less transparency in AI decision-making operations further causes skepticism and mistrust regarding their integration and implementation.

Furthermore, concerns regarding less access to AI technologies and the risk of amplification of educational inequalities are also prominent. Less availability of resources in less developed countries or low funded regions could constrain access to AI technologies, making disparities in learning and teaching opportunities (Dritsas *et al.*, 2025; Makarova & Makarova, 2018). Moreover, AI-based technologies often need the analysis and collection

of high amounts of student data, causing potentially privacy concerns related to the handling, security and storage of sensitive information. High risks like breaching of data and the misuse of the information of students increase these concerns.

Overreliance on AI based tools could also make worsen students’ critical thinking and their learning abilities. There are also possible risks of student’s high reliance on AI tools for decision-making, information retrieval and problem-solving which could reduce their analytical thinking and creativity (Barabas, 2020; Bedel & Özdemir, 2019; Cukurova *et al.*, 2020). Additionally, the integration of AI based systems sometimes needs substantial investment in trainings, technological infrastructure and ongoing maintenance. Therefore, the financial burden of integrating AI into the current educational frameworks could result in resistance, primarily in higher institutions with fewer resources.

Strategic Framework for AI Adoption

The model given here Table 1 explores the different challenges and possible opportunities that under developed and developing nations confront with when implementing AI technologies into their higher education, showcasing the importance of contextual components. Successful integration of AI tools and techs in higher education while maintaining core educational values demands a strategic and calculated approach (Dankbaar & de Jong, 2014; Kaur *et al.*, 2023; Ocen *et al.*, 2025b). Main strategies for efficient AI integration comprise setting clear educational goals, engaging main stakeholders, continuing and maintaining ethical guidelines, offering professional development opportunities, encouraging creativity and critical thinking, funding technological infrastructure, monitoring the impact of AI tools continuously, and keeping a balance between the interaction of AI and human beings. These steps promise a more comprehensive approach and promote ownership and greater acceptance of AI tools among administrators, educators and students.

Training and capacity building of educators to efficiently use AI tools in the practices of their teaching is important for successful integration (Ocen *et al.*, 2025b; Ouchchy *et al.*, 2020). Efficient training strategies and tactics include assessing requirements, forming collaborative learning communities, providing tailored training modules and professional development programs, extending ongoing coaching and support, presenting successful implementations, and promoting reflection and experimentation. Needs assessments should indicate the particular AI skills and tools important for educators, facilitating hands-on training and opportunities to be practice with AI tools (Ocen *et al.*, 2025b). Professional development trainings and programs should be more focused on granting educators with real-world applications and practical skills of AI tools (Akhtyamova, 2021). Collaborative learning communities, including online interest groups and

Table 1: Strategic Framework for integration of AI tools in Higher Education: tailored for developing countries.

Stage	Focus Areas	Strategic Actions	Expected Outcomes	References
Planning	Infrastructure Assessment	Examine the present status of technological infrastructure. Point out areas that need upgrading.	Cleared understanding of infrastructure needs.	(Ocen <i>et al.</i> , 2025b)
	Goal and Objective Setting	Set goals and objectives aligned with the educational needs	Clear alignment of AI integration with national educational goals.	(Munawar, 2022)
	Budget and Funding Strategy	Evaluate financing, grants and collaborations for acquiring financial resources to integrate AI technologies.	Secured financial resources for proper AI adoption.	(Huang <i>et al.</i> , 2023)
	Stakeholder Engagement and Partnerships	Involve expert educators, administrators, and community members for contextual relevance and sustainability.	Increase and engage collaboration and ownership among local stakeholders.	(Marcolin <i>et al.</i> , 2021)
	Ethical and Cultural Considerations	Set guidelines respecting local cultural and ethical standards in implementation of AI.	Ethical AI practices tailored to local cultural contexts.	(Falebita & Kok, 2024)
Implementation	AI Tool Selection	Identify AI tools suitable for developing countries' technical infrastructure limitations.	Practical and adaptable AI solutions.	(Xiao <i>et al.</i> , 2025)
	Training and Capacity Building	Develop suitable training programs to enhance digital literacy for both educators and students.	Increased teacher and trainer's competency and confidence in using AI tools.	(Coghlan <i>et al.</i> , 2021)
	Pilot projects Testing	Integrate AI tools in different educational settings to evaluate their impact.	Pilot data on AI tools' effectiveness in various educational settings.	(Tanveer <i>et al.</i> , 2020)
	Impact Monitoring and Practice Documentation	Collection of data to analyze the outcomes of AI integration and document practices successfully.	Insights to refine and expand AI strategies	(Ranalli <i>et al.</i> , 2017)
	Technical Challenge Resolution	Explore offline or low-bandwidth AI solutions for technical internet and other challenges.	Increased reliability and accessibility of AI tools.	(Xiao <i>et al.</i> , 2025)
Scaling-Up	Replication and Scaling	Scale AI applications from pilot projects to make sure wider access.	Access on large scale to AI-enhanced educational opportunities.	(Holstein, 2019)
	Regional and International Collaboration	Establish partnerships between educational institutions, governments, and international organizations for resource sharing.	Improved cross-border cooperation and knowledge exchange.	(Gordes & Waller, 2019)
	Policy Advocacy and Investment	Take into account policymakers to prioritize AI	Increased institutional and governmental support for AI adoption.	(Velázquez & Méndez, 2018)
	Open Educational Resources (OER)	Promote the development of AI-driven open educational resources	Improved access to quality educational materials at low cost.	(Xiao <i>et al.</i> , 2025)
Evaluation	Learning Outcome Assessment	Examine how AI tools affect learning outcomes, student engagement, and educational equity.	Data-driven evaluation of educational impact and effectiveness.	(Dritsas <i>et al.</i> , 2025)
	Stakeholder Feedback Integration	Gather feedback from local educators and community members to ensure AI tools meet local needs.	Improved alignment with local needs and expectations.	(Dankbaar & de Jong, 2014)

	Evidence-Based Decision-Making	Utilize evaluation results to inform future AI strategies and use resources effectively.	Strategic proper improvements which are based on empirical evidence.	(Rienties <i>et al.</i> , 2020)
	Knowledge Sharing and South-South Cooperation	Make easy knowledge-sharing among developing nations to foster AI innovation and capacity-building.	Strong regional capacity and shared innovation.	(Kaur <i>et al.</i> , 2023)

platforms, should permit educators to share ideas and insights and ask questions. Personalized training modules should focus on multiple levels of expertise and fields, ensuring accessibility and relevance. Ongoing coaching and support programs should give personalized guidance and constructive feedback for educators navigates AI effective implementation.

Coordination among academia, industry, and the policymakers is crucial to ensuring the proper adoption of AI technologies in higher education. Strategic collaborations and partnerships can bring together specialization from different subject areas, facilitating dialogue on sustainable AI practices. Policymakers play an important role in establishing ethical and social guidelines and legal frameworks to facilitate fair AI adoption (Holstein, 2019; İŞMAN *et al.*, 2019). Furthermore, initiatives such as knowledge exchange programs, research and development, policy development, public engagement, pilot testing and continuous assessments are essential for supporting responsible AI assimilation in higher education (Packin & Lev-Aretz, 2018). Also support by funding research which is focused on ethical AI and the impact of AI tools on learning and teaching processes can further amplify this system. This comprehensive approach guarantees that AI integration improves the quality of education while managing the unique concerns and challenges encountered by developing nations.

CONCLUSION

This paper has analyzed the integration of AI based tools in higher education of developing countries and their significance in their academic institutions. The growing usages of AI technologies propose significant gains, including improved personalized learning, educational experiences and enhanced administrative efficiency. However, challenges and concerns related to bias, ethics and the possible loss of critical thinking and human interaction must be carefully evaluated. A balanced and measured approach to AI implementation is needed, one that retains core educational values while making use of AI's advantages. Various strategies for successful implementation and integration include pointing out clear educational aims, engaging different stakeholders, ensuring a proper balance between human and AI involvement and forming ethical frameworks. Coordination among academia, policymakers and industry is very important for shaping reliable AI adoption, making sure its implementation successfully and ethically in higher education.

REFERENCES

Abuhmaid, A. M. (2020). The Efficiency of Online Learning Environment for Implementing Project-Based Learning: Students' Perceptions. *International Journal of Higher Education*, 9(5), 76-83.

Adejo, O., & Connolly, T. (2017). Learning analytics in a shared-network educational environment: Ethical issues and countermeasures. *Learning*, 8(4), 156-163.

Akhtyamova, I. (2021). Artificial Intelligence in 21st Century Education a Space for New Teaching Opportunities. *Bulletin of Science and Practice*, 7(2), 330-338.

Alordiah, C., & Agbajor, H. (2014). Bias in test items and implication for national development. *Journal of Education and Practice*, 5(9), 10-13.

Alordiah, C., Omumu, F., & Kaizar, V. (2023). Investigating why students in Nigeria perceive education as a scam. *Journal of Applied Learning and Teaching*, 6(1), 234-243.

Alordiah, C. O., Osagiede, M. A., Omumu, F. C., Okokoyo, I. E., Emiko-Agbajor, H. T., Chenube, O., & Oji, J. (2023). Awareness, knowledge, and utilisation of online digital tools for literature review in educational research. *Helijon*, 9(1).

Asad, M. M., Hussain, N., Wadho, M., Khand, Z. H., & Churi, P. P. (2021). Integration of e-learning technologies for interactive teaching and learning process: an empirical study on higher education institutes of Pakistan. *Journal of Applied Research in Higher Education*, 13(3), 649-663.

Barabas, C. (2020). Beyond bias: re-imagining the terms of "ethical ai" in criminal law. *Geo. JL & Mod. Critical Race Persp.*, 12, 83.

Bedel, A., & Özdemir, B. (2019). Ortaokul öğrencilerinin problem çözme becerilerinde otomatik düşünülerinin ve karar verme stillerinin rolü. *Marmara Üniversitesi Atatiirk Eğitim Fakültesi Eğitim Bilimleri Dergisi*, 53(53), 309-325.

Brink, R., & Ohei, K. N. (2019). A framework development for the adoption of information and communication technology web technologies in higher education systems. *Journal of Economic and Financial Sciences*, 12(1), 1-12.

Buerck, J. P. (2014). A resource-constrained approach to implementing analytics in an institution of higher education: An experience report. *Journal of Learning Analytics*, 1(1), 129-139.

Coghlan, S., Miller, T., & Paterson, J. (2021). Good proctor or "big brother"? Ethics of online exam supervision technologies. *Philosophy & Technology*, 34(4), 1581-1606.

Cukurova, M., Luckin, R., & Kent, C. (2020). Impact of an artificial intelligence research frame on the perceived credibility of educational research evidence. *International Journal of Artificial Intelligence in Education*, 30(2), 205-235.

Dankbaar, M. E., & de Jong, P. G. (2014). Technology for learning: how it has changed education. *Perspectives on medical education*, 3, 257-259.

Dritsas, E., Trigka, M., Troussas, C., & Mylonas, P. (2025). Multimodal Interaction, Interfaces, and Communication: A Survey. *Multimodal Technologies and Interaction*, 9(1), 6.

Falebita, O. S., & Kok, P. J. (2024, 2024/09/13). Strategic goals for artificial intelligence integration among STEM academics and undergraduates in African higher education: a systematic review. *Discover Education*, 3(1), 151. <https://doi.org/10.1007/s44217-024-00252-1>

Gibbs, M. B. (2022). *How is new technology changing job design?* IZA World of Labor.

Goel, A. K., & Polepeddi, L. (2018). Jill Watson: A virtual teaching assistant for online education. In *Learning engineering for online education* (pp. 120-143). Routledge.

Gordes, K. L., & Waller, S. M. (2019). Novel partnerships for interprofessional education: A pilot education program in 3D technologies for human centered computing students and physical therapy students. *Journal of Interprofessional Education & Practice*, 15, 15-18.

Haiguang, F., Shichong, W., Shushu, X., & Xianli, W. (2020). Research on human-computer cooperative teaching supported by artificial intelligence robot assistant. *Artificial intelligence supported educational technologies*, 45-58.

Holm, J. R., & Lorenz, E. (2022). The impact of artificial intelligence on skills at work in Denmark. *New Technology, Work and Employment*, 37(1), 79-101.

Holstein, K. (2019). *Designing real-time teacher augmentation to combine strengths of human and AI instruction.* Unpublished doctoral dissertation, Carnegie Mellon University. [Record #70 is using a reference type undefined in this output style.]

İşman, A., Odabaşı, H. F., & Akkoynul, B. (2019). *Eğitim Teknolojileri Okumaları 2019*.

Kaur, M., Rekha, A., Resmi, A., & Gandolfi, F. (2023). Research on Artificial Intelligence in Human Resource Management: Trends and Prospects. *Global Journal of Management and Business Research: An Administration and Management*, 23(5), 31-46.

Makarova, E. A., & Makarova, E. L. (2018). Blending pedagogy and digital technology to transform educational environment. *International Journal of Cognitive Research in Science, Engineering and Education: (IJCRSEE)*, 6(2), 57-66.

Marcolin, F., Vezzetti, E., & Monaci, M. G. (2021). Face perception foundations for pattern recognition algorithms. *Neurocomputing*, 443, 302-319.

Munawar, A. (2022). Construction of Environmentally Minded History Learning Through Infographic Media to Increase Students' Ecopedagogy. *International Seminar on Social Studies and History Education*,

Ocen, S., Elasu, J., Aarakit, S. M., & Olupot, C. (2025a, 2025-March-03). Artificial intelligence in higher education institutions: review of innovations, opportunities and challenges [Review]. *Frontiers in Education*, Volume 10 - 2025. <https://doi.org/10.3389/feduc.2025.1530247>

Ocen, S., Elasu, J., Aarakit, S. M., & Olupot, C. (2025b). Artificial intelligence in higher education institutions: review of innovations, opportunities and challenges. *Frontiers in Education*,

Ouchchy, L., Coin, A., & Dubljević, V. (2020). AI in the headlines: the portrayal of the ethical issues of artificial intelligence in the media. *AI & society*, 35, 927-936.

Packin, N. G., & Lev-Aretz, Y. (2018). Learning algorithms and discrimination. In *Research handbook on the law of artificial intelligence* (pp. 88-113). Edward Elgar Publishing.

Paquette, L., Baker, R. S., & Moskal, M. (2018). A system-general model for the detection of gaming the system behavior in CTAT and LearnSphere. *International Conference on Artificial Intelligence in Education*,

Pierce, G. L., & Cleary, P. F. (2016). The K-12 educational technology value chain: Apps for kids, tools for teachers and levers for reform. *Education and Information Technologies*, 21, 863-880.

Pikhart, M. (2020). Intelligent information processing for language education: The use of artificial intelligence in language learning apps. *Procedia Computer Science*, 176, 1412-1419.

Ranalli, J., Link, S., & Chukharev-Hudilainen, E. (2017). Automated writing evaluation for formative assessment of second language writing: Investigating the accuracy and usefulness of feedback as part of argument-based validation. *Educational Psychology*, 37(1), 8-25.

Rienties, B., Köhler Simonsen, H., & Herodotou, C. (2020, July). Defining the boundaries between artificial intelligence in education, computer-supported collaborative learning, educational data mining, and learning analytics: A need for coherence. In *Frontiers in Education* (Vol. 5, p. 128). Frontiers Media SA.

Sætra, H. S. (2020). A shallow defence of a technocracy of artificial intelligence: Examining the political harms of algorithmic governance in the domain of government. *Technology in Society*, 62, 101283.

Spector, J. M., & Ma, S. (2019). Inquiry and critical thinking skills for the next generation: from artificial intelligence back to human intelligence. *Smart Learning Environments*, 6(1), 1-11.

Su, J., & Yang, W. (2022). Artificial intelligence in early childhood education: A scoping review. *Computers and Education: Artificial Intelligence*, 3, 100049.

Tan, K. H., Chan, P. P., & Mohd Said, N.-E. (2021). Higher education students' online instruction perceptions: A quality virtual learning environment. *Sustainability*, 13(19), 10840.

Tanveer, M., Hassan, S., & Bhaumik, A. (2020). Academic policy regarding sustainability and artificial intelligence (AI). *Sustainability*, 12(22), 9435.

Tyson, J. (2024). Leveraging Social Capital to Enhance Equity and Inclusion in Exceptional Student Education in the United States. *Comprehensive Approaches to Conflict Resolution*, 407.

Velázquez, F. D. C., & Méndez, G. M. (2018).

Augmented reality and mobile devices: A binomial methodological resource for inclusive education (SDG 4). An example in secondary education. *Sustainability*, 10(10), 3446.

Xiao, N., Pei, Y., Yuan, C., Bu, Y., & Cai, Z. (2025, 01/04).

Transforming Education with Artificial Intelligence: A Comprehensive Review of Applications, Challenges, and Future Directions. *International Theory and Practice in Humanities and Social Sciences*, 2, 337-356. <https://doi.org/10.70693/itphss.v2i1.211>