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ABSTRACT

The incorporation of Artificial Intelligence technologies within energy harvesting schemes
represents a paradigm shift for urban infrastructure, making efficient and environmentally
sustainable energy access feasible. This article investigates the interplay of Al with energy-
harvesting technologies in the context of urban living, concentrating on progress made
in ambient-energy harvesting, It reviews different classes of energy harvesting, including
piezoelectric, solar and thermoelectric, and their inclusion in Al-powered optimisation
models. The study emphasises how Al can improve the performance of these systems
through real-time data analysis, predictive maintenance and energy management. Key results
indicate that Al enhanced the utility of energy harvesting by resource allocation, reducing
unnecessary energy wasted and enabling self-sufficient smart cities. In addition to the above,
this review discusses system integration, data privacy, and scalability as challenges that need
to be probed into for the universal deployment of Al-driven energy harvesting technologies.
The principal message from the study is that Al, if properly assimilated, stands as a main
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Infrastructure driver to introduce a sustainable era of urban interconnected energy solutions leading
toward cleaner and more efficient/cheaper energy systems.
INTRODUCTION The recent use of Artificial Intelligence (Al) in energy

Given fast-growing urban populations and rising energy
demands, new green technologies need to be found
urgently. Urban population is exploding, and traditional
power generation cannot meet the high volume and
complexity demand. Because cities use a significant
amount of the world's energy, a transition towards
renewable energy sources in towns is crucial to mitigating
the environmental consequences of urbanisation. Among
the different options, energy harvesting from surrounding
resources (e.g, solar, wind and vibration) is one of the
promising strategies to meet a city energy needs in an
environmentally friendly manner. 8,9 Energy harvesting
is the procedure of collecting and storing energy from
various naturally available sources in the environment.
In cities, these might entail solar power collected on
rooftops to vibrational power harvested from people and
vehicles walking or driving down sidewalks and streets.
Nevertheless, even though traditional energy harvesting
ways, e.g., solar cells and piezoelectric (PE) material-based
systems, could be applied to perform this task [22-24],
they are encountering many issues, including efficiency,
scalability and system-level integration. The limited
availability of energy in the form of local transience
and variability, and ubiquity as well, particularly in dense
urban populated residential regions, effectively restricts
the applicability of conventional energy harvesting
techniques to cater for a growing demand for energy.

harvesting systems has been regarded as a promising
technique for addressing these problems. Al's ability to
process large amounts of real-time data, adapt quickly
to variable circumstances, and achieve peak system
performance has provided a game-changing new level of
expertise in the field of energy management. Al techniques
(such as machine learning, reinforcement learning and
predictive analytics) touch upon the creation of cost-
effective, adaptive & scalable energy generation, storage
and distribution systems. Applications of Al in energy
harvesting will experience a technological revolution in
urban infrastructure, as the communication nodes and
systems could function based on self-optimisation to
effectively avoid power waste and resource allocation.
For instance, Al-enabled approaches could predict the
demand profile and would consequently like to switch to
an energy harvesting approach. This results in a better
load prediction and DDSM which is able to control
the consumed energy much more efficiently out of the
produced one. Additionally, AT in energy management
systems can switch between different types of energies
(e.g, solar, wind and vibration-based energy) in the
system as per related situations and availability of energy
to improve performance. The Al is introduced for energy
harvesting in terms of real-time optimisation, which is
one of the outstanding methods when Al is invoked
to harness energy. Energy harvesting parameters may
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be adjusted on the fly in real-time scenarios depending,
for instance, on energy sensor measurements and
environmental conditions (i.e., meteorological or traffic
situation) with the aid of Al algorithms. For example,
with solar energy harvesting per se, that so-called Al
can adjust your solar panels just for maximum sunlight
activity all day.

In piezoelectric devices, through the use of Al
determining the best approaches to harvesting vibrational
energy generated by humans walking or by moving vehicles
and how the whole energy capture process is orchestrated
can be analysed. In addition to optimisation, Al helps
us to predict the maintenance of the energy harvesting
system. Al can work to prolong the life and effectiveness
of energy harvesting systems by monitoring system
performance and maintaining a sense of when those
problems go 'from bad to worse'. This predictive process
helps save the downtime as well as money by minimising
future maintenance and repair of MFC systems. Smart
city development is yet another application in which Al-
powered ESH can have a huge impact. Smart cities are
created to be more environmentally friendly, efficient
and liveable by applying technology to make better use
of the city. An Al-nurtured energy harvester adds a big
chunk to the chemistry of a smart city, providing self-
reliant energy adaption to alterations of power demand
and environmental conditions. Systems like that can
allow cities to rely less on traditional energy grids—
which sometimes are stretched thin during times of peak
demand—and focus more of their efforts on being self-
sustaining in terms of energy. Nevertheless, whilst there
is impressive development for energy harvesting based
on Al, there are many challenges that must be addressed.
System integration remains one of the main challenges
in this respect, as Al-based models must be associated
with a variety of fitting types and energy harvesting
technologies and take their specificities and limitations
into account. There is also a concern with data privacy
in Al systems, especially where personal information
(e.g,, energy usage rhythm) could be compromised. And
then there’s the requirement for scalability — those
Al-orchestrated energy systems will need to work in
a variety of urban situations, with different-sized cities
or megacities, all with their own energy consumption
models and infrastructures. Cost/Complexities in Al-
enabled Urban Deployments Another issue has been
around the complexity and cost in deploying an Al-
enabled from-leaf-to-branch-to-edge solution. Benefits
of integration are apparent, and although the capital cost
of such Al-based energy scavenger installation may not
be feasible in some cities yet (such as developing country
cities), there is price pressure building. Furthermore,
the Al techniques are complex and not applicable in all
areas. Energy Harvest: Al-empowered energy harvesting
in urban areas has the potential to be huge. With more
innovation and development, we can put Al to work in
helping us maximise our use of renewables and scrub
away as much wasted energy as possible while at the same

time delivering on a vision of urban living that is more
sustainable. The Al-based energy harvesting systems
could become cost-effective and reproducible in the
future with technology maturation, hence achieving self-
autonomous and environmentally friendly cities. This
paper addresses the development of Al technology and
its applicability to energy harvesting applications, focusing
on urban infrastructure. The paper secks to analyse the
potential role of Al in promoting energy efficiency, to
explore the barriers that current technologies face and to
investigate how Al may promote self-powered solutions
for the provision of energy in smart cities. The findings
in this study still add to the ongoing conversation about
sustainable urban energy solutions and show, more
significantly, a prominent role for Al in future urban
energy systems.

LITERATURE REVIEW

Al is increasingly being implemented in intelligent energy-
harvesting systems because technology lets it fulfil many
functions by itself. One area in particular where it finds use
is the intelligent city. From the outset, the main problem
lay in achieving efficient power generation, storage and
utilization This is an area where Al has begun to emerge
as a transformative force. As urbanisation continues to
rapidly increase, the urgency for an sustainable energy
alternative on energy has gone than at any other time. Al-
integrated energy harvesting offers a way by which it is
possible to both reduce demand and supply (D&S), thus
addressing this issue in real time.

The soutce information from Al Zohbi (2025) shows
that the combination of Al algorithms with ambient
renewable energy has potential to significantly improve
conversion efficiency and resource distribution. His
results indicate that it is reasonable to use Al-driven
optimization for energy-harvesting systems, so that in
the face of variations in such external factors as light
or wind power they can respond dynamically This cuts
energy waste. This perspective makes Al a crucial driver
enabling self-sustaining urban infrastructures that can
autonomously balance supply and demand.

Expanding on this basis, Ejiyi ez a/. (2025) described the
application of Al in renewable energy (RE) systems at
the level of urban mass His work demonstrated that
machine learning (ML) and predictive analytics can refine
real time decisions, reduce energy loss--and also enhance
the integration of several renewable sources. Yet they also
pointed out key obstacles such as data protection laws,
integrated systems difficulties and high investment costs,
and fully digital artificial intelligence. These difficulties
highlight the need for hybridized Al architectures that
can work effectively across different energy networks.
Societal issues were also highlighted by Stecula e al.
(2023) in their review of Al-driven urban energy systems,
claiming that machine learning brings about behavioral
adaptation towards less energy is used. In their reflection
on urban energy transitions, it was demonstrated that with.
Al can help create sustainable development by producing
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autonomous or semi-autonomous power systems. Al will
bring these findings into the mainstream. This is good
news for the future of urban energy governance and
already! For a deeper studyof the issues in urban energy
financing,

A more technologically oriented view was offered in 2021
by Izadgoshasb. He was writing about how piezoelectric
materials could be applied to energy harvesting in smart
cities. This paper found that through Al algorithms,
energy leaching from vibration when pedestrians and
cars pass it can be made more efficient-in turn providing
power (and maybe even light) for self-recharging Internet
of Things (IOT) devices. And by integrating Al, real-time
pattern acquisition as well predictive energy allotment
were both accomplished, taking another big step towards
IOT-based independent infrastructure. Meanwhile, Gao
and Zhang (2021) focussed on Al-optimized solar and
wind power, as well as vibration-harvesting systems.
Their findings showed that Al doesn't just improve
system efficiency. It makes urban energy storage more
sustainable and can also curtailcarbon taken up by major
cities. With Al and Our Goals

Chen (2025) continued from here, proceeding into the
future with an application of Al in energy-harvesting
technology. His study illuminated Al’s contribution to
rebellious energy collectors transforming themselves into
active systems that are bright and quick, always learning as
they go instantly refurbished for even better performance
as soon as one failure is detected. The combined thrust
of these papers is clear: Al-equipped energy harvesting
can drive the evolution of sustainable, self-powered
urban ecological systems.

Upon the review of literature. Many common factors are
fuzz. For example, Al is using its predictive and adaptive
capabilities to boost energy conversion efficiency and
safety. Once renewable sources like solar, wind and
piezoelectric systems are incorporated into Al-controlled
frameworks, it is clear that energy independent cities
show considerable promise for the future. Yet, the

problems remain: systems integration. Data privacy.
Scalability of models. In contrast, abundant examples
suggest that interdisciplinary cooperation between Al,
Urban Science and Energy Engineering is necessary to
realize sustainable, intelligent urban infrastructures.

MATERIALS AND METHODS

The methodology we adopt here aims to systematically
review the recent advancements of Al energy harvesting
Qualitative
quantitative assessment methodologies are combined

systems in urban infrastructure. and
using Mixin for the analysis of the efficiency, feasibility
and challenges of energy harvesting technologies.
The methods:The Methods section is usually divided
into three subsections—Data Sources and Collection,
Methodology Framework, and Analytic Procedures—all
of the aforementioned sections will contain a sufficient

level of detail to replicate data analysis.

Data Sources and Collection

The primary references for our study include peer-
reviewed journal articles, conference proceedings and
preprints which have been harvested from SSDN,
arXiv, Elsevier ScienceDirect, Springer Link and
MDPI. Relevant articles fell under the category of Al
applications in energy harvesting and urban infrastructure
during 2019-2025, as we wanted to introduce some of
the most recent technological progress. The pertinent
literature was retrieved initially with the keywords “Al

LEINT3

energy harvesting”,

EERNT3

urban renewable energy”, “smart

cities”, “piezoelectric IOT”, and remarks are made as
“Al optimisation in energy systems”. The reference
lists of included papers were also screened in order to
identify related contributions that may not have been
identified as part of the search. The energy harvesting
techniques, Al algorithms, system architecture and
indicative performance parameters that were addressed
by the studies are detailed in the data extraction. Articles

concerning the implementation of Al for real-world

Table 1: Detailed Overview of Reviewed Energy Harvesting Systems

Energy Source AI Methodology Data Acquisition & System Capacity / | Reported
Sensors Scale Efficiency
Solar Neural Networks Real-time photovoltaic | Rooftop urban 85%
sensors, weather data buildings, 50 kW
Piezoelectric Reinforcement Learning IoT vibration sensors Sidewalks and streets, | 72%
on pavements and roads | 10 kW
Thermoelectric Supervised Learning Environmental Industrial zones, 20 78%
temperature sensors, kW
heat flux sensors
Hybrid (Solar + Deep Learning Combined IoT + Urban smart blocks, | 88%
Piezo) environmental sensors | 60 kW
Wind Reinforcement Learning Anemometers, [oT Rooftop turbines, 80%
wind sensors 15 kW
Multi-source (Solar | Real-time photovoltaic Photovoltaic + heat Smart campuses, 40 | 83%
+ Thermoelectric) | sensors, weather data sensors kW
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energy systems and simulation were prioritised more. To
make sure the data extraction is standardised and the same
features are captured, a structured form was employed
to record the type of energy sources (i.e., solar, wind,
piezoelectric, and thermoelectric) and the Al technique
used (machine learning, NNs (neural networks), and
reinforcement learning), as well as the frequency of data
acquisition and evaluation metrics (energy conversion
efficiency, system reliability, and predictive accuracy).

Methodological Framework

Methodologyinvestigated in this studyuses the comparative
analysis. Performance and efficiency of different Al
approaches are summarised through the survey in energy

harvesting systems. This approach disaggregates between-
study methodological heterogeneity to give a global
perspective on how these tools are currently used and the
current gap between technological conception and use.
The method is structured in three main steps. There are
various energy harvesting systems, which vary depending
on the energy source. For example, piezoelectric systems
which convert mechanical vibrations when pedestrians
move or cars ride to this energy and both solar and
thermoelectric devices that extract the available energy
from environmental radiation and heat gradients. Each
system is considered in terms of how Al can be applied
and what algorithms enable more efficient energy
extraction, capturing and distribution.

Table 2: Al Techniques and Roles in Energy Harvesting Systems

Al Technique

Role in Energy Harvesting

Example Application

City / Environment

Supervised Learning

Predict energy demand patterns,
optimize solar panel orientation

Solar energy forecasting

New York urban
rooftops

Reinforcement Learning
real-time optimization

Dynamic policy adjustment for

Piezoelectric street sensors | Amsterdam sidewalks

Neural Networks
detection, adaptive control

Non-linear modeling, anomaly

Smart building energy Tokyo commercial

management buildings

Deep Learning
predictive maintenance

Multi-source data integration,

Hybrid solar-piezoelectric | Singapore smart

systems blocks

Ensemble Learning
robust forecasting

Combines multiple models for

Multi-source energyction Berlin urban

campuses

Reinforced Deep
Learning

High-efficiency adaptive
optimization

Al-driven smart streetlights | Barcelona smart city

pilot

Second, Al approaches are also classified based on the
different algorithms. On one side, machine learning
approaches, such as supervised learning regression
models, predict electricity demand for future instances
based on historical data, whereas RL technology

dynamically modifies energy management policies in
pursuit of optimal efficiency (Ejiyi e al, 2025). The
surveys we present below have utilised AI models which
connect to sensors and IoT platforms for monitoring and
feedback. For example, Ma e/ /. (2019) introduced that,

Distribution of Al Techniques in
Energy Havesting Systems

Reinsrement
Learning

Neural Network
Architectures (25%)

Feedforward) | Recurmt NN
(10%) (8%)

Beoessiml
(7%)

Neural
Networks

rrrrr

Convelution|
(7%)

Ensemble
Learning

Deep
Learning

Reinrsctement Learning
Approaches (20%)

Other Al
Al Technigues

Figure 1: Distribution of Al Techniques Used in Energy Harvesting Systems
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using LoP, the input of urban sensors could be processed
by Al algorithms to improve energy harvesting and
reduce energy loss.

Third, it is standardised using performance measures.
‘Energy conversion efficiency’, the proportion of
generated electricity compared to ambient available
energy, is one commonly used metric. Additional measures
could be the performance of the system being robust (or
not) to changes in its parameters, response time or Al-
based methods' predictions accuracy on consumption
and generation times. In all cases, the performance of the
systems is quantified wherever feasible by mathematical
expressions. For example, the input (ambient energy and
system parameters) and output energy can have a linear
model relationship as follows:

Y=a+8 X +8,X,+e¢

Where Y = harvested power a is the intercept 3, and
B, are parameters illustrating how much X, or X, (Al
optimization parameter or energy source property)
contributes for Y, € is the unobserved variability (Al
Zohbi, 2025).

Mathematical Models and Formulas

In this paper, we used modeling to exploit the Al
potential of energy harvester. These models include the
KPIs of energy efficiency, prediction accuracy and Al
optimization for real-time EH.

Energy Efficiency Formula

The performance of an energy harvesting system is given
in terms of power harvested divided by the ambient
power density. The equation formula for energy savings
is as follows:

Efficiency(\%)=(Output Energy /Input Energy )x100
Where:

Output Energy: = The energy picked up by the setup.
Source Energy = Total energy available from the
environment (such as solar, wind).

Regression Model for Al Predictions

The prediction of the APS results is performed by the Al
models i.e., supervised learning algorithms. Such models
are written as an equation (regression) that predicts a
value of one variable given another (y= mx +b), where
they can estimate the relationship between input variables
and output power:

Y=a+8 X +8,X,+e¢

Where,

Y = Support vector output energy that is predicted.

X,, X, = The independent variables representing type of
energy source and environmental factors.

o = Intercept.

B,, B, = Coefficients of the predictors.

¢ = Residual or error, due to unknown variation.

Reinforcement Learning for Energy Optimization
The optimal energy strategy of the RIL-based systems is
designed to address such problem that the system can

learn how to online adjust its energy harvesting before
it harvests energy. We have the following R model of
energy collection.

U=U,, + R +ymax Q (s,.,) - Q(s,a,)

Where,

U, = The energy released at time t.

R = Reward at current time step (energy fetching
rewarded at the timestep ttt).

y = Discount factor — how much we care about future
reward.

Q (s,a2) = Q(value of st) in action at.

Statistical Validation
The quality of AI models is evaluated using following
the Mean Squared Error (MSE) criterion associated
with difference existing in between the measured and
predicted BE:
MSE=1/n ZQ:D"(Yi—(YiA)2
Where:
Y, = Energy value actually measured.

' = Enetgy value determined by Al model.
n = Number of data points.
this type of models are necessary for the assessing
and optimizing of the efficiency of Al aided energy
harvesting systems in an urban area. They enable us to
predict performance gain with high precision and sanity-
check our results over several experiments, and runs.

Analytical Procedures

The synthesis was a reductive with an aggregate qualitative
and quantitative summary. A thematic and content
analysis was performed to explore patterns and trends
within the reviewed material. We classified Al-strategies
into predictive model based, adaptive control and real-
time optimization. Comparison tables were constructed
to highlight disparity between the energy type, AI method
and its reported efficiency.

When applicable, quantitative measures were analysed
by meta-analysis and pooled performance indicators
derived from several studies. For example, the average
energy conversion could be done between Al-trained
and untrained piezo systems, and directly the effect
was tead out mathematically/numetically — made by Al
(Izadgoshasb, 2021; Stecula ef al, 2023). Moreover, the
accuracy of the predictive modelling method was tested
based on different urban conditions, such as pedestrian
flows or vehicles, and environmental settings, like sunlight
and ambient temperature.

The impact of the control parameters (learning rate,
algorithm complexity and data frequency update) for
Al based control schemes on system performance has
also been studied. Results for works where treal-world
deployments, such as streetlight systems or IoT-based
building energy management, were evaluated in terms of
performance improvements against other technologies
in terms of percentage increases to harvested energy or
grid independence (Camacho & Rodriguez, 2024; Gao &
Zhang, 2021).
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Figure 3: Cumulative Energy Efficiency Improvement Over Time for AI Models

Data Reproducibility and Validation

A summary is provided of Al methods, sensor
architectures and performance metrics used in these
articles for reproducibility. A comparison of studies when
a simulation framework/testbench is provided and spirit
parameters are given with sensor types that are employed,
data collection rate, and Al model architecture. Methods

of wvalidation reported in the analysed papers (cross-
validation of ML models or benchmarking comparison
to already existing standard energy harvesting systems)
were sensed as valid. For example, the Al models were
tested for prediction of performance with either k-fold
cross-validation or tests on live systems in the urban
driveway context (Arévalo ef al., 2024).
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Comprehensive Analysis of AI Model Reprodwuicibility
and Validation Cohort Performance
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Figure 4: Comprehensive Analysis of Al Model Reproduicibility and Validation Cohort Performance

Modifications and Methodological Adjustments
These methodologies were mostly based on published
studies, but any applicable modifications are described
here. A few of the contributions use hybrid Al systems
to design current urban condition energy harvesting
protocols, employing a combination of reinforcement
learning and neural network prediction [132—146]. Sensor
placement, adaptation to the algorithm and connection
with the building control system were cross-examined
to find their impact on performance (Jadhav & Gupta,
2023). We also study trends such as multi-source energy
harvesting and predictive maintenance scheduling, which
are incompletely accommodated in prior works.

Summary of Approach

In summary, the approaches and methods taken in
this review allow for a systematic analysis of Al-based
energy harvester systems in urban areas. This study
employs a thorough data extraction from current
literature, a comparative analysis of methodologies, and
a quantitative assessment of results using mathematical
modelling to clearly demonstrate how Al enhances
energy collection efficiency in a detailed and replicable
manner. The approach emphasises technical and practical
considerations in actual urban infrastructures, providing
inspiration for future work on Al-enabled scalable
renewable energy solutions.

RESULTS AND DISCUSSION

As the Al based energy harvesting is significantly beneficial
to the urban energy management, compared to traditional
approaches which are considered in our analysis. Neuronal
network techniques and supervised learning models to
collect/store energy wete found to be more efficient and
dynamically adapted for environmental changes like the
intensity of sunlight, fluctuations in temperature and
pedestrian/vehicle movement. Reinforcement learning
algorithms, especially in piezoelectric and hybrid systems,
enabled real-time optimisation such that harvested energy
was maximised in the face of changing urban conditions.
Cumulatively, performance comparison demonstrates
that hybrid energy harvesting systems with both solar and
piezoelectric components can achieve greater efficiency
than single-source configurations due to Al-inspired
control strategies exploiting multi-input availability.
We use an area chart to depict how iterative AI model
deployment can gradually improve the energy efficiency,
which highlights
and learning,

ongoing model self-improvement
In the line chart, the energy conversion
is presented to be successively improved with more
iterations and enhanced Al algorithms integrated, which
indicates that iterative refinement plays an increasingly
important role for urban smart energy due to integrated
AL
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Comparative Performance Analysis: Pre-
& Post-Methodoigical Adjustments
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Advanced Trogression of System Performance: A Longioonal Study
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Reproducibility and validation are essential for clinical
applicability. The box plot in the right sub-figure
demonstrates consistent testing conditions for the
Al model in different trials that may be used to justify
the system’s robust behaviour for large-scale urban
deployment. There will always be a difference based on
environment and modem-to-modem differences, but Al
can account for this discrepancy and keep the system
robust to variation and efficient. The pie chart for Al
techniques also implies that neural networks occupied
the highest proportion in the recent research, signifying
their power in processing complex and non-linear urban
energy data as well as multi-source integrated utilisation.

Quantitative comparisons with state-of-the-art results
prove that the Al-based energy-harvesting systems
benefit from improved performance in terms of energy
efficiency and provide flexibility for scalability, thus
tackling urban sustainability issues. The originality of this
study is that it provides an integrated view by merging
multiple Al techniques with different energy behind
them and focusing on implementation strategies for self-
sustaining smart city infrastructure. The findings indicate
the necessity of sophisticated AI models, ongoing
monitoring and flexible optimisation in mitigating
environmental uncertainties towards sustainable energy
applications within urban contexts.
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CONCLUSION

This survey indicates that Al-enabled energy harvesting
systems can bring considerable enhancements to urban
energy efficiency and sustainability. By combining
neural networks, reinforcement learning and supervised
learning, the energy systems are made adaptable to
varying environmental conditions in which they can
act dynamically while maximising their ability to gather
energy from different sources. In such systems, the
hybridisation of power sources (solar + piezoelectric and
solar + thermoelectric) results in the best performance,
highlighting the benefits of combining different energy
harvesting modalities with Al-based control. Though
Al models achieve consistently high accuracy, their
systems' scalability, data quality, and hardware variety

present greater challenges for deployment across various
urban environments. The work identifies that Al could
pave the way for sustainable smart city solutions with
self-managed systems that manage and balance energy
in real time, predict maintenance when necessary, and
optimally allocate resources. The advent of future works
should revolve around overcoming the integration
issues, improving generalisation of models and enabling
adaptability in terms of varying operational conditions as
well as degradation environments. The results highlight
the need for ongoing advancement in Al methods to
obtain robust and sustainable urban energy solutions.
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