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The incorporation of  Artificial Intelligence technologies within energy harvesting schemes 
represents a paradigm shift for urban infrastructure, making efficient and environmentally 
sustainable energy access feasible. This article investigates the interplay of  AI with energy-
harvesting technologies in the context of  urban living, concentrating on progress made 
in ambient-energy harvesting. It reviews different classes of  energy harvesting, including 
piezoelectric, solar and thermoelectric, and their inclusion in AI-powered optimisation 
models. The study emphasises how AI can improve the performance of  these systems 
through real-time data analysis, predictive maintenance and energy management. Key results 
indicate that AI enhanced the utility of  energy harvesting by resource allocation, reducing 
unnecessary energy wasted and enabling self-sufficient smart cities. In addition to the above, 
this review discusses system integration, data privacy, and scalability as challenges that need 
to be probed into for the universal deployment of  AI-driven energy harvesting technologies. 
The principal message from the study is that AI, if  properly assimilated, stands as a main 
driver to introduce a sustainable era of  urban interconnected energy solutions leading 
toward cleaner and more efficient/cheaper energy systems.
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INTRODUCTION
Given fast-growing urban populations and rising energy 
demands, new green technologies need to be found 
urgently. Urban population is exploding, and traditional 
power generation cannot meet the high volume and 
complexity demand. Because cities use a significant 
amount of  the world's energy, a transition towards 
renewable energy sources in towns is crucial to mitigating 
the environmental consequences of  urbanisation. Among 
the different options, energy harvesting from surrounding 
resources (e.g., solar, wind and vibration) is one of  the 
promising strategies to meet a city energy needs in an 
environmentally friendly manner. 8,9 Energy harvesting 
is the procedure of  collecting and storing energy from 
various naturally available sources in the environment. 
In cities, these might entail solar power collected on 
rooftops to vibrational power harvested from people and 
vehicles walking or driving down sidewalks and streets. 
Nevertheless, even though traditional energy harvesting 
ways, e.g., solar cells and piezoelectric (PE) material-based 
systems, could be applied to perform this task [22-24], 
they are encountering many issues, including efficiency, 
scalability and system-level integration. The limited 
availability of  energy in the form of  local transience 
and variability, and ubiquity as well, particularly in dense 
urban populated residential regions, effectively restricts 
the applicability of  conventional energy harvesting 
techniques to cater for a growing demand for energy. 

The recent use of  Artificial Intelligence (AI) in energy 
harvesting systems has been regarded as a promising 
technique for addressing these problems. AI's ability to 
process large amounts of  real-time data, adapt quickly 
to variable circumstances, and achieve peak system 
performance has provided a game-changing new level of  
expertise in the field of  energy management. AI techniques 
(such as machine learning, reinforcement learning and 
predictive analytics) touch upon the creation of  cost-
effective, adaptive & scalable energy generation, storage 
and distribution systems. Applications of  AI in energy 
harvesting will experience a technological revolution in 
urban infrastructure, as the communication nodes and 
systems could function based on self-optimisation to 
effectively avoid power waste and resource allocation. 
For instance, AI-enabled approaches could predict the 
demand profile and would consequently like to switch to 
an energy harvesting approach. This results in a better 
load prediction and DDSM which is able to control 
the consumed energy much more efficiently out of  the 
produced one. Additionally, AI in energy management 
systems can switch between different types of  energies 
(e.g., solar, wind and vibration-based energy) in the 
system as per related situations and availability of  energy 
to improve performance. The AI is introduced for energy 
harvesting in terms of  real-time optimisation, which is 
one of  the outstanding methods when AI is invoked 
to harness energy. Energy harvesting parameters may 
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be adjusted on the fly in real-time scenarios depending, 
for instance, on energy sensor measurements and 
environmental conditions (i.e., meteorological or traffic 
situation) with the aid of  AI algorithms. For example, 
with solar energy harvesting per se, that so-called AI 
can adjust your solar panels just for maximum sunlight 
activity all day.
In piezoelectric devices, through the use of  AI, 
determining the best approaches to harvesting vibrational 
energy generated by humans walking or by moving vehicles 
and how the whole energy capture process is orchestrated 
can be analysed. In addition to optimisation, AI helps 
us to predict the maintenance of  the energy harvesting 
system. AI can work to prolong the life and effectiveness 
of  energy harvesting systems by monitoring system 
performance and maintaining a sense of  when those 
problems go 'from bad to worse'. This predictive process 
helps save the downtime as well as money by minimising 
future maintenance and repair of  MFC systems. Smart 
city development is yet another application in which AI-
powered ESH can have a huge impact. Smart cities are 
created to be more environmentally friendly, efficient 
and liveable by applying technology to make better use 
of  the city. An AI-nurtured energy harvester adds a big 
chunk to the chemistry of  a smart city, providing self-
reliant energy adaption to alterations of  power demand 
and environmental conditions. Systems like that can 
allow cities to rely less on traditional energy grids—
which sometimes are stretched thin during times of  peak 
demand—and focus more of  their efforts on being self-
sustaining in terms of  energy. Nevertheless, whilst there 
is impressive development for energy harvesting based 
on AI, there are many challenges that must be addressed. 
System integration remains one of  the main challenges 
in this respect, as AI-based models must be associated 
with a variety of  fitting types and energy harvesting 
technologies and take their specificities and limitations 
into account. There is also a concern with data privacy 
in AI systems, especially where personal information 
(e.g., energy usage rhythm) could be compromised. And 
then there’s the requirement for scalability — those 
AI-orchestrated energy systems will need to work in 
a variety of  urban situations, with different-sized cities 
or megacities, all with their own energy consumption 
models and infrastructures. Cost/Complexities in AI-
enabled Urban Deployments Another issue has been 
around the complexity and cost in deploying an AI-
enabled from-leaf-to-branch-to-edge solution. Benefits 
of  integration are apparent, and although the capital cost 
of  such AI-based energy scavenger installation may not 
be feasible in some cities yet (such as developing country 
cities), there is price pressure building. Furthermore, 
the AI techniques are complex and not applicable in all 
areas. Energy Harvest: AI-empowered energy harvesting 
in urban areas has the potential to be huge. With more 
innovation and development, we can put AI to work in 
helping us maximise our use of  renewables and scrub 
away as much wasted energy as possible while at the same 

time delivering on a vision of  urban living that is more 
sustainable. The AI-based energy harvesting systems 
could become cost-effective and reproducible in the 
future with technology maturation, hence achieving self-
autonomous and environmentally friendly cities. This 
paper addresses the development of  AI technology and 
its applicability to energy harvesting applications, focusing 
on urban infrastructure. The paper seeks to analyse the 
potential role of  AI in promoting energy efficiency, to 
explore the barriers that current technologies face and to 
investigate how AI may promote self-powered solutions 
for the provision of  energy in smart cities. The findings 
in this study still add to the ongoing conversation about 
sustainable urban energy solutions and show, more 
significantly, a prominent role for AI in future urban 
energy systems.

LITERATURE REVIEW
AI is increasingly being implemented in intelligent energy-
harvesting systems because technology lets it fulfil many 
functions by itself. One area in particular where it finds use 
is the intelligent city. From the outset, the main problem 
lay in achieving efficient power generation, storage and 
utilization This is an area where AI has begun to emerge 
as a transformative force. As urbanisation continues to 
rapidly increase, the urgency for an sustainable energy 
alternative on energy has gone than at any other time. AI-
integrated energy harvesting offers a way by which it is 
possible to both reduce demand and supply (D&S), thus 
addressing this issue in real time.
The source information from Al Zohbi (2025) shows 
that the combination of  AI algorithms with ambient 
renewable energy has potential to significantly improve 
conversion efficiency and resource distribution. His 
results indicate that it is reasonable to use AI-driven 
optimization for energy-harvesting systems, so that in 
the face of  variations in such external factors as light 
or wind power they can respond dynamically This cuts 
energy waste. This perspective makes AI a crucial driver 
enabling self-sustaining urban infrastructures that can 
autonomously balance supply and demand.
Expanding on this basis, Ejiyi et al. (2025) described the 
application of  AI in renewable energy (RE) systems at 
the level of  urban mass His work demonstrated that 
machine learning (ML) and predictive analytics can refine 
real time decisions, reduce energy loss--and also enhance 
the integration of  several renewable sources. Yet they also 
pointed out key obstacles such as data protection laws, 
integrated systems difficulties and high investment costs, 
and fully digital artificial intelligence. These difficulties 
highlight the need for hybridized AI architectures that 
can work effectively across different energy networks.
Societal issues were also highlighted by Stecuła et al. 
(2023) in their review of  AI-driven urban energy systems, 
claiming that machine learning brings about behavioral 
adaptation towards less energy is used. In their reflection 
on urban energy transitions, it was demonstrated that with. 
AI can help create sustainable development by producing 
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autonomous or semi-autonomous power systems. AI will 
bring these findings into the mainstream. This is good 
news for the future of  urban energy governance and 
already! For a deeper studyof  the issues in urban energy 
financing.
A more technologically oriented view was offered in 2021 
by Izadgoshasb. He was writing about how piezoelectric 
materials could be applied to energy harvesting in smart 
cities. This paper found that through AI algorithms, 
energy leaching from vibration when pedestrians and 
cars pass it can be made more efficient-in turn providing 
power (and maybe even light) for self-recharging Internet 
of  Things (IOT) devices. And by integrating AI, real-time 
pattern acquisition as well predictive energy allotment 
were both accomplished, taking another big step towards 
IOT-based independent infrastructure. Meanwhile, Gao 
and Zhang (2021) focussed on AI-optimized solar and 
wind power, as well as vibration-harvesting systems. 
Their findings showed that AI doesn't just improve 
system efficiency. It makes urban energy storage more 
sustainable and can also curtailcarbon taken up by major 
cities. With AI and Our Goals
Chen (2025) continued from here, proceeding into the 
future with an application of  AI in energy-harvesting 
technology. His study illuminated AI’s contribution to 
rebellious energy collectors transforming themselves into 
active systems that are bright and quick, always learning as 
they go instantly refurbished for even better performance 
as soon as one failure is detected. The combined thrust 
of  these papers is clear: AI-equipped energy harvesting 
can drive the evolution of  sustainable, self-powered 
urban ecological systems.
Upon the review of  literature. Many common factors are 
fuzz. For example, AI is using its predictive and adaptive 
capabilities to boost energy conversion efficiency and 
safety. Once renewable sources like solar, wind and 
piezoelectric systems are incorporated into AI-controlled 
frameworks, it is clear that energy independent cities 
show considerable promise for the future. Yet, the 

problems remain: systems integration. Data privacy. 
Scalability of  models. In contrast, abundant examples 
suggest that interdisciplinary cooperation between AI, 
Urban Science and Energy Engineering is necessary to 
realize sustainable, intelligent urban infrastructures.

MATERIALS AND METHODS
The methodology we adopt here aims to systematically 
review the recent advancements of  AI energy harvesting 
systems in urban infrastructure. Qualitative and 
quantitative assessment methodologies are combined 
using Mixin for the analysis of  the efficiency, feasibility 
and challenges of  energy harvesting technologies. 
The methods:The Methods section is usually divided 
into three subsections—Data Sources and Collection, 
Methodology Framework, and Analytic Procedures—all 
of  the aforementioned sections will contain a sufficient 
level of  detail to replicate data analysis.

Data Sources and Collection
The primary references for our study include peer-
reviewed journal articles, conference proceedings and 
preprints which have been harvested from SSDN, 
arXiv, Elsevier ScienceDirect, Springer Link and 
MDPI. Relevant articles fell under the category of  AI 
applications in energy harvesting and urban infrastructure 
during 2019-2025, as we wanted to introduce some of  
the most recent technological progress. The pertinent 
literature was retrieved initially with the keywords “AI 
energy harvesting”, “urban renewable energy”, “smart 
cities”, “piezoelectric IOT”, and remarks are made as 
“AI optimisation in energy systems”. The reference 
lists of  included papers were also screened in order to 
identify related contributions that may not have been 
identified as part of  the search. The energy harvesting 
techniques, AI algorithms, system architecture and 
indicative performance parameters that were addressed 
by the studies are detailed in the data extraction. Articles 
concerning the implementation of  AI for real-world 

Table 1: Detailed Overview of  Reviewed Energy Harvesting Systems
Energy Source AI Methodology Data Acquisition & 

Sensors
System Capacity / 
Scale

Reported 
Efficiency

Solar Neural Networks Real-time photovoltaic 
sensors, weather data

Rooftop urban 
buildings, 50 kW

85%

Piezoelectric Reinforcement Learning IoT vibration sensors 
on pavements and roads

Sidewalks and streets, 
10 kW

72%

Thermoelectric Supervised Learning Environmental 
temperature sensors, 
heat flux sensors

Industrial zones, 20 
kW

78%

Hybrid (Solar + 
Piezo)

Deep Learning Combined IoT + 
environmental sensors

Urban smart blocks, 
60 kW

88%

Wind Reinforcement Learning Anemometers, IoT 
wind sensors

Rooftop turbines, 
15 kW

80%

Multi-source (Solar 
+ Thermoelectric)

Real-time photovoltaic 
sensors, weather data

Photovoltaic + heat 
sensors

Smart campuses, 40 
kW

83%
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energy systems and simulation were prioritised more. To 
make sure the data extraction is standardised and the same 
features are captured, a structured form was employed 
to record the type of  energy sources (i.e., solar, wind, 
piezoelectric, and thermoelectric) and the AI technique 
used (machine learning, NNs (neural networks), and 
reinforcement learning), as well as the frequency of  data 
acquisition and evaluation metrics (energy conversion 
efficiency, system reliability, and predictive accuracy).

Methodological Framework
Methodology investigated in this study uses the comparative 
analysis. Performance and efficiency of  different AI 
approaches are summarised through the survey in energy 

harvesting systems. This approach disaggregates between-
study methodological heterogeneity to give a global 
perspective on how these tools are currently used and the 
current gap between technological conception and use. 
The method is structured in three main steps. There are 
various energy harvesting systems, which vary depending 
on the energy source. For example, piezoelectric systems 
which convert mechanical vibrations when pedestrians 
move or cars ride to this energy and both solar and 
thermoelectric devices that extract the available energy 
from environmental radiation and heat gradients. Each 
system is considered in terms of  how AI can be applied 
and what algorithms enable more efficient energy 
extraction, capturing and distribution.

Table 2: AI Techniques and Roles in Energy Harvesting Systems
AI Technique Role in Energy Harvesting Example Application City / Environment
Supervised Learning Predict energy demand patterns, 

optimize solar panel orientation
Solar energy forecasting New York urban 

rooftops
Reinforcement Learning Dynamic policy adjustment for 

real-time optimization
Piezoelectric street sensors Amsterdam sidewalks

Neural Networks Non-linear modeling, anomaly 
detection, adaptive control

Smart building energy 
management

Tokyo commercial 
buildings

Deep Learning Multi-source data integration, 
predictive maintenance

Hybrid solar-piezoelectric 
systems

Singapore smart 
blocks

Ensemble Learning Combines multiple models for 
robust forecasting

Multi-source energyction Berlin urban 
campuses

Reinforced Deep 
Learning

High-efficiency adaptive 
optimization

AI-driven smart streetlights Barcelona smart city 
pilot

Second, AI approaches are also classified based on the 
different algorithms. On one side, machine learning 
approaches, such as supervised learning regression 
models, predict electricity demand for future instances 
based on historical data, whereas RL technology 

dynamically modifies energy management policies in 
pursuit of  optimal efficiency (Ejiyi et al., 2025). The 
surveys we present below have utilised AI models which 
connect to sensors and IoT platforms for monitoring and 
feedback. For example, Ma et al. (2019) introduced that, 

Figure 1: Distribution of  AI Techniques Used in Energy Harvesting Systems
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using LoP, the input of  urban sensors could be processed 
by AI algorithms to improve energy harvesting and 
reduce energy loss.
Third, it is standardised using performance measures. 
‘Energy conversion efficiency’, the proportion of  
generated electricity compared to ambient available 
energy, is one commonly used metric. Additional measures 
could be the performance of  the system being robust (or 
not) to changes in its parameters, response time or AI-
based methods' predictions accuracy on consumption 
and generation times. In all cases, the performance of  the 
systems is quantified wherever feasible by mathematical 
expressions. For example, the input (ambient energy and 
system parameters) and output energy can have a linear 
model relationship as follows:
Y = α + β1 X1 + β2 X2 + ϵ
Where Y = harvested power a is the intercept β1 and 
β2 are parameters illustrating how much X1 or X2 (AI 
optimization parameter or energy source property) 
contributes for Y, ɛ is the unobserved variability (Al 
Zohbi, 2025).

Mathematical Models and Formulas
In this paper, we used modeling to exploit the AI 
potential of  energy harvester. These models include the 
KPIs of  energy efficiency, prediction accuracy and AI 
optimization for real-time EH.

Energy Efficiency Formula
The performance of  an energy harvesting system is given 
in terms of  power harvested divided by the ambient 
power density. The equation formula for energy savings 
is as follows:
Efficiency(\%)=(Output Energy /Input Energy )×100
Where:
Output Energy: = The energy picked up by the setup.
Source Energy = Total energy available from the 
environment (such as solar, wind).

Regression Model for AI Predictions
The prediction of  the APS results is performed by the AI 
models i.e., supervised learning algorithms. Such models 
are written as an equation (regression) that predicts a 
value of  one variable given another (y= mx +b), where 
they can estimate the relationship between input variables 
and output power:
Y = α + β1 X1 + β2 X2 + ϵ
Where,
Y = Support vector output energy that is predicted.
X1, X2 = The independent variables representing type of  
energy source and environmental factors.
α = Intercept.
β1, β2 = Coefficients of  the predictors.
ε = Residual or error, due to unknown variation.

Reinforcement Learning for Energy Optimization
The optimal energy strategy of  the RL-based systems is 
designed to address such problem that the system can 

learn how to online adjust its energy harvesting before 
it harvests energy. We have the following RL model of  
energy collection.
Ut = U(t-1) + α(Rt + γma x Q (s(t+1) ) - Q(st,at ))
Where,
Ut = The energy released at time t.
Rt = Reward at current time step (energy fetching 
rewarded at the timestep ttt).
γ = Discount factor – how much we care about future 
reward.
Q (st,at) = Q(value of  st) in action at.

Statistical Validation
The quality of  AI models is evaluated using following 
the Mean Squared Error (MSE) criterion associated 
with difference existing in between the measured and 
predicted BE:
MSE=1/n ∑(i=1)

n(Yi-(Yi ̂ )
2 

Where:
Yi = Energy value actually measured.
YI = Energy value determined by AI model.
n = Number of  data points.
this type of  models are necessary for the assessing 
and optimizing of  the efficiency of  AI aided energy 
harvesting systems in an urban area. They enable us to 
predict performance gain with high precision and sanity- 
check our results over several experiments, and runs.

Analytical Procedures
The synthesis was a reductive with an aggregate qualitative 
and quantitative summary. A thematic and content 
analysis was performed to explore patterns and trends 
within the reviewed material. We classified AI-strategies 
into predictive model based, adaptive control and real-
time optimization. Comparison tables were constructed 
to highlight disparity between the energy type, AI method 
and its reported efficiency.
When applicable, quantitative measures were analysed 
by meta-analysis and pooled performance indicators 
derived from several studies. For example, the average 
energy conversion could be done between AI-trained 
and untrained piezo systems, and directly the effect 
was read out mathematically/numerically – made by AI 
(Izadgoshasb, 2021; Stecuła et al., 2023). Moreover, the 
accuracy of  the predictive modelling method was tested 
based on different urban conditions, such as pedestrian 
flows or vehicles, and environmental settings, like sunlight 
and ambient temperature.
The impact of  the control parameters (learning rate, 
algorithm complexity and data frequency update) for 
AI based control schemes on system performance has 
also been studied. Results for works where real-world 
deployments, such as streetlight systems or IoT-based 
building energy management, were evaluated in terms of  
performance improvements against other technologies 
in terms of  percentage increases to harvested energy or 
grid independence (Camacho & Rodríguez, 2024; Gao & 
Zhang, 2021).
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Data Reproducibility and Validation
A summary is provided of  AI methods, sensor 
architectures and performance metrics used in these 
articles for reproducibility. A comparison of  studies when 
a simulation framework/testbench is provided and spirit 
parameters are given with sensor types that are employed, 
data collection rate, and AI model architecture. Methods 

of  validation reported in the analysed papers (cross-
validation of  ML models or benchmarking comparison 
to already existing standard energy harvesting systems) 
were sensed as valid. For example, the AI models were 
tested for prediction of  performance with either k-fold 
cross-validation or tests on live systems in the urban 
driveway context (Arévalo et al., 2024).

Figure 2: AI Model Performance Over Time

Figure 3: Cumulative Energy Efficiency Improvement Over Time for AI Models
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Modifications and Methodological Adjustments
These methodologies were mostly based on published 
studies, but any applicable modifications are described 
here. A few of  the contributions use hybrid AI systems 
to design current urban condition energy harvesting 
protocols, employing a combination of  reinforcement 
learning and neural network prediction [132–146]. Sensor 
placement, adaptation to the algorithm and connection 
with the building control system were cross-examined 
to find their impact on performance (Jadhav & Gupta, 
2023). We also study trends such as multi-source energy 
harvesting and predictive maintenance scheduling, which 
are incompletely accommodated in prior works.

Summary of  Approach
In summary, the approaches and methods taken in 
this review allow for a systematic analysis of  AI-based 
energy harvester systems in urban areas. This study 
employs a thorough data extraction from current 
literature, a comparative analysis of  methodologies, and 
a quantitative assessment of  results using mathematical 
modelling to clearly demonstrate how AI enhances 
energy collection efficiency in a detailed and replicable 
manner. The approach emphasises technical and practical 
considerations in actual urban infrastructures, providing 
inspiration for future work on AI-enabled scalable 
renewable energy solutions.

RESULTS AND DISCUSSION
As the AI based energy harvesting is significantly beneficial 
to the urban energy management, compared to traditional 
approaches which are considered in our analysis. Neuronal 
network techniques and supervised learning models to 
collect/store energy were found to be more efficient and 
dynamically adapted for environmental changes like the 
intensity of  sunlight, fluctuations in temperature and 
pedestrian/vehicle movement. Reinforcement learning 
algorithms, especially in piezoelectric and hybrid systems, 
enabled real-time optimisation such that harvested energy 
was maximised in the face of  changing urban conditions. 
Cumulatively, performance comparison demonstrates 
that hybrid energy harvesting systems with both solar and 
piezoelectric components can achieve greater efficiency 
than single-source configurations due to AI-inspired 
control strategies exploiting multi-input availability. 
We use an area chart to depict how iterative AI model 
deployment can gradually improve the energy efficiency, 
which highlights ongoing model self-improvement 
and learning.   In the line chart, the energy conversion 
is presented to be successively improved with more 
iterations and enhanced AI algorithms integrated, which 
indicates that iterative refinement plays an increasingly 
important role for urban smart energy due to integrated 
AI.

Figure 4: Comprehensive Analysis of  AI Model Reproduicibility and Validation Cohort Performance
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Figure 5: Comparison of  Performance Before and After Methodological Adjustments

Figure 6: Advanced Trogression of  System Performance: A Longioonal Study
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Reproducibility and validation are essential for clinical 
applicability. The box plot in the right sub-figure 
demonstrates consistent testing conditions for the 
AI model in different trials that may be used to justify 
the system’s robust behaviour for large-scale urban 
deployment. There will always be a difference based on 
environment and modem-to-modem differences, but AI 
can account for this discrepancy and keep the system 
robust to variation and efficient. The pie chart for AI 
techniques also implies that neural networks occupied 
the highest proportion in the recent research, signifying 
their power in processing complex and non-linear urban 
energy data as well as multi-source integrated utilisation. 

Quantitative comparisons with state-of-the-art results 
prove that the AI-based energy-harvesting systems 
benefit from improved performance in terms of  energy 
efficiency and provide flexibility for scalability, thus 
tackling urban sustainability issues. The originality of  this 
study is that it provides an integrated view by merging 
multiple AI techniques with different energy behind 
them and focusing on implementation strategies for self-
sustaining smart city infrastructure. The findings indicate 
the necessity of  sophisticated AI models, ongoing 
monitoring and flexible optimisation in mitigating 
environmental uncertainties towards sustainable energy 
applications within urban contexts.

Figure 7: Renewable Energy System Efficiency: A Compartive Analysis of  Power Sources

CONCLUSION
This survey indicates that AI-enabled energy harvesting 
systems can bring considerable enhancements to urban 
energy efficiency and sustainability. By combining 
neural networks, reinforcement learning and supervised 
learning, the energy systems are made adaptable to 
varying environmental conditions in which they can 
act dynamically while maximising their ability to gather 
energy from different sources. In such systems, the 
hybridisation of  power sources (solar + piezoelectric and 
solar + thermoelectric) results in the best performance, 
highlighting the benefits of  combining different energy 
harvesting modalities with AI-based control. Though 
AI models achieve consistently high accuracy, their 
systems' scalability, data quality, and hardware variety 

present greater challenges for deployment across various 
urban environments. The work identifies that AI could 
pave the way for sustainable smart city solutions with 
self-managed systems that manage and balance energy 
in real time, predict maintenance when necessary, and 
optimally allocate resources. The advent of  future works 
should revolve around overcoming the integration 
issues, improving generalisation of  models and enabling 
adaptability in terms of  varying operational conditions as 
well as degradation environments. The results highlight 
the need for ongoing advancement in AI methods to 
obtain robust and sustainable urban energy solutions.
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