Evaluating the Efficacy of Proximal Femoral Nail Antirotation with Augmentation in Managing Osteoporotic Intertrochanteric Fractures: A Comprehensive Review
DOI:
https://doi.org/10.54536/ajlsi.v3i2.2759Keywords:
Augmentation, Cement, Fracture, Osteoporotic Intertrochanteric Fracture, PFNAAbstract
Addressing intertrochanteric fractures in those with impaired bone quality using orthopedic surgery is a huge challenge. This review assesses the effectiveness of Proximal Femoral Nail Antirotation (PFNA) with augmentation, cement being the best augmentation compared to others, in healing these fractures. Comparative analyses show that PFNA is significantly better than PFN, with reduced operative times, blood loss and complications, especially in high-risk elderly patients. This review compiles data from 15 articles which aims to provide an overall picture of the present evidence on the use of PFNA technique supplemented by the application of osteoporotic intertrochanteric fractures. Augmentation methods, such as cement augmentation, have come to the forefront as important adjuncts to increase stability and effectiveness in PFNA procedures. Research has demonstrated that adapting the cement augmentation technique helps to restore load-bearing capacity, lower implant failure rate and to better the clinical results in total joint arthroplasty. PFNA with cement augmentation effectively treats intertrochanteric fractures in osteoporosis hips, providing satisfactory results and potential for further clinical development. This review brings to the forefront the necessity of stabilizing the osteodensification and the proper cement augmentation, all of which aid in enhancing stability, occasioning less complications and leading to better postoperative outcomes. The future development in PFNA techniques and the trending advancement of augmentation strategies would allow the field of surgery to benefit from an even more optimized way of dealing with these fractures in the clinical setting which is both promising and favorable.
Downloads
References
Augat, P., & Von Rüden, C. (2020). Biomechanical considerations for fixation of osteoporotic bone. In Surgical and Medical Treatment of Osteoporosis (107-116). CRC Press.
Avate, S., Gaonkar, K. L., Vatsa, M., Kumari, L., & Patil, S. (2023). Functional Outcome of Inter-Trochanteric and Sub-Trochanteric Fracture Femur Treated with Proximal Femur Nail Antirotation-II. Research Journal of Pharmacy and Technology, 16(12), 5884-5888.
Bishnoi, M., Kirmani, T. T., Huda, N., Chahal, G., & Bishnoi, S. (2018). Epidemiological analysis of hip fractures at a tertiary care center: a retrospective study. Int J Res Orthop, 4(4), 568-571.
Bizzoca, D., Vicenti, G., Caiaffa, V., Abate, A., De Carolis, O., Carrozzo, M., Solarino, G., & Moretti, B. (2023). Assessment of fracture healing in orthopaedic trauma. Injury, 54, S46-S52.
Chandra, G., & Pandey, A. (2021). Design approaches and challenges for biodegradable bone implants: a review. Expert Review of Medical Devices, 18(7), 629-647.
Chen, X., Cheng, X., Ma, W., Chen, C., & Zhang, G. (2020). Effects of Proximal Femoral Nail Anti-Rotation (PFNA-II) and Artificial Total Hip Arthroplasty (THA) on Unstable Intertrochanteric Femoral Fracture Combined with Severe Osteoporosis. Journal of Biomaterials and Tissue Engineering, 10(3), 413-417.
Chen, X., Hu, Y., Geng, Z., & Su, J. (2022). The “three in one” bone repair strategy for osteoporotic fractures. Frontiers in endocrinology, 13, 910602.
Chiapasco, M., & Casentini, P. (2018). Horizontal bone‐augmentation procedures in implant dentistry: prosthetically guided regeneration. Periodontology 2000, 77(1), 213-240.
Chirayath, A., Dhaniwala, N., & Kawde, K. (2024). A Comprehensive Review on Managing Fracture Calcaneum by Surgical and Non-surgical Modalities. Cureus, 16(2).
Duramaz, A., & İlter, M. H. (2019). The impact of proximal femoral nail type on clinical and radiological outcomes in the treatment of intertrochanteric femur fractures: a comparative study. European Journal of Orthopaedic Surgery & Traumatology, 29, 1441-1449.
Gaobotse, G., Mbunge, E., Batani, J., & Muchemwa, B. (2022). Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies. Sensors International, 3, 100156.
Gold, D. T., Williams, S. A., Weiss, R. J., Wang, Y., Watkins, C., Carroll, J., Middleton, C., & Silverman, S. (2019). Impact of fractures on quality of life in patients with osteoporosis: a US cross-sectional survey. Journal of drug assessment, 8(1), 175-183.
Guo, H., Chen, G.-x., Lian, H.-y., Liu, K.-x., Li, Z.-t., & Chen, X.-q. (2022). Finite element analysis of proximal femoral nail anti-rotation in the treatment of osteoporotic AO3. 3 intertrochanteric fracture.
Hollensteiner, M., Sandriesser, S., Bliven, E., von Rüden, C., & Augat, P. (2019). Biomechanics of osteoporotic fracture fixation. Current osteoporosis reports, 17, 363-374.
Inginshetty, N. M. (2019). Prospective Study of Surgical Management of Intertrochanteric Fractures with Proximal Femoral Nail Anti-Rotation-II Rajiv Gandhi University of Health Sciences (India)].
Jin, Z., Xu, S., Yang, Y., Wei, Y., Tian, Y., Wang, Z., & Bai, L. (2021). Cemented hemiarthroplasty versus proximal femoral nail antirotation in the management of intertrochanteric femoral fractures in the elderly: a case control study. BMC Musculoskeletal Disorders, 22, 1-12.
Karkenny, A. J., Mendelis, J. R., Geller, D. S., & Gomez, J. A. (2019). The role of intraoperative navigation in orthopaedic surgery. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 27(19), e849-e858.
Kulachote, N., Sa-Ngasoongsong, P., Sirisreetreerux, N., Chulsomlee, K., Thamyongkit, S., & Wongsak, S. (2020). Predicting factors for return to prefracture ambulatory level in high surgical risk elderly patients sustained intertrochanteric fracture and treated with proximal femoral nail antirotation (PFNA) with and without cement augmentation. Geriatric Orthopaedic Surgery & Rehabilitation, 11, 2151459320912121.
Lakhmania, V. (2020). A Prospective Study on Surgical Management Of Unstable Intertrochanteric Fractures and Subtrochanteric Fractures with Proximal Femoral Nail Antirotation Rajiv Gandhi University of Health Sciences (India)].
Ledet, E. H., Liddle, B., Kradinova, K., & Harper, S. (2018). Smart implants in orthopedic surgery, improving patient outcomes: a review. Innovation and entrepreneurship in health, 41-51.
Maffulli, N., & Aicale, R. (2022). Proximal femoral fractures in the elderly: a few things to know, and some to forget. Medicina, 58(10), 1314.
Meng, M., Wang, J., Huang, H., Liu, X., Zhang, J., & Li, Z. (2023). 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. Journal of Orthopaedic Translation, 42, 94-112.
Mittal, A., Gill, S. P., Kumar, D., Singh, J., Kumar, H., & Rajput, A. (2021). Early Functional Outcome of Osteoporotic Intertrochantric Fractures in Elderly Managed with Proximal Femoral Nail and Proximal Femoral Nail Antirotation: A Comparative Study. MAMC Journal of Medical Sciences, 7(1), 63-71.
Moore, K. L. (2019). Automated radiotherapy treatment planning. Seminars in radiation oncology,
Nair, V., Gupta, S., Krishna, A., Patil, A., & Kumar, A. (2019). A comparative study between proximal femoral nail and proximal femoral nail antirotation in treatment of unstable inter trochanteric fractures in elderly. International Journal of Orthopaedics, 5(3), 130-134.
Ni, X.-H., Zhu, X.-Y., Zhang, Z.-Y., Zhang, L., Ren, L.-B., Wu, J.-S., Wang, L.-J., Zhao, Q.-M., & Zhang, F. (2022). Clinical effect of cement-enhanced APFN in the treatment of elderly osteoporotic intertrochanteric fractures. European Review for Medical & Pharmacological Sciences, 26(11).
Noh, J.-Y., Yang, Y., & Jung, H. (2020). Molecular mechanisms and emerging therapeutics for osteoporosis. International journal of molecular sciences, 21(20), 7623.
Patil, D. D. (2019). Comparative Study of Outcomeof Management of Inter-Trochanteric Fractures Byusing Proximal Femoral Nail (PFN) and Proximal Femoral Nail Antirotation-Ii (PFNA-II) Rajiv Gandhi University of Health Sciences (India)].
Perez, J. R., Kouroupis, D., Li, D. J., Best, T. M., Kaplan, L., & Correa, D. (2018). Tissue engineering and cell-based therapies for fractures and bone defects. Frontiers in bioengineering and biotechnology, 6, 105.
Piccirilli, E., Cariati, I., Primavera, M., Triolo, R., Gasbarra, E., & Tarantino, U. (2022). Augmentation in fragility fractures, bone of contention: A systematic review. BMC Musculoskeletal Disorders, 23(1), 1046.
Roth, S., Rali, P., Scott, J. H., Ho, T.-A., & Beckman, A. (2021). Cement Embolism Systematic Review search strategies.
Rozell, J. C., Delagrammaticas, D. E., & Schwarzkopf, R. (2019). Interprosthetic femoral fractures: management challenges. Orthopedic Research and Reviews, 119-128.
Sachin, H. (2019). A Study on Functional Outcome of Surgical Management of Proximal Femur Fracture with Proximal Femur Nail A2 Rajiv Gandhi University of Health Sciences (India)].
Salari, N., Ghasemi, H., Mohammadi, L., Behzadi, M. H., Rabieenia, E., Shohaimi, S., & Mohammadi, M. (2021). The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. Journal of orthopaedic surgery and research, 16, 1-20.
Schlundt, C., Bucher, C. H., Tsitsilonis, S., Schell, H., Duda, G. N., & Schmidt-Bleek, K. (2018). Clinical and research approaches to treat non-union fracture. Current Osteoporosis Reports, 16, 155-168.
Schuetze, K., Ehinger, S., Eickhoff, A., Dehner, C., Gebhard, F., & Richter, P. (2021). Cement augmentation of the proximal femur nail antirotation: is it safe? Archives of Orthopaedic and Trauma Surgery, 141, 803-811.
Schuetze, K., Eickhoff, A., Röderer, G., Gebhard, F., & Richter, P. H. (2019). Osteoporotic bone: when and how to use augmentation? Journal of Orthopaedic Trauma, 33, S21-S26.
Sermon, A., Zderic, I., Khatchadourian, R., Scherrer, S., Knobe, M., Stoffel, K., & Gueorguiev, B. (2021). Bone cement augmentation of femoral nail head elements increases their cut-out resistance in poor bone quality–A biomechanical study. Journal of Biomechanics, 118, 110301.
Sharma, B., Sharma, S., & Jain, P. (2021). Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. International journal of biological macromolecules, 169, 414-427.
Singaram, S., & Naidoo, M. (2019). The physical, psychological and social impact of long bone fractures on adults: A review. African Journal of Primary Health Care and Family Medicine, 11(1), 1-9.
Singh, N. K., Sharma, V., Trikha, V., Gamanagatti, S., Roy, A., Balawat, A. S., Aravindh, P., & Diwakar, A. R. (2019). Is PFNA-II a better implant for stable intertrochanteric fractures in elderly population? A prospective randomized study. Journal of Clinical Orthopaedics and Trauma, 10, S71-S76.
Soleymani Eil Bakhtiari, S., Bakhsheshi‐Rad, H. R., Karbasi, S., Tavakoli, M., Hassanzadeh Tabrizi, S. A., Ismail, A. F., Seifalian, A., RamaKrishna, S., & Berto, F. (2021). Poly (methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 70(9), 1182-1201.
Stramazzo, L., Ratano, S., Monachino, F., Pavan, D., Rovere, G., & Camarda, L. (2021). Cement augmentation for trochanteric fracture in elderly: A systematic review. Journal of Clinical Orthopaedics and Trauma, 15, 65-70.
Su, Z., Yang, M., Luo, G., Liang, L., & Hao, Y. (2022). Treatment of elderly femoral intertrochanteric fracture by InterTan intramedullary nail and PFNA. Evidence-Based Complementary and Alternative Medicine, 2022.
Thakur, A. J. (2022). The Elements of Fracture Fixation-E-Book. Elsevier Health Sciences.
Tolstunov, L., Hamrick, J. F. E., Broumand, V., Shilo, D., & Rachmiel, A. (2019). Bone augmentation techniques for horizontal and vertical alveolar ridge deficiency in oral implantology. Oral and Maxillofacial Surgery Clinics, 31(2), 163-191.
Ulusoy, O. L., Kahraman, S., Karalok, I., Kaya, E., Enercan, M., Sever, C., Abay, B., Karadereler, S., & Hamzaoglu, A. (2018). Pulmonary cement embolism following cement-augmented fenestrated pedicle screw fixation in adult spinal deformity patients with severe osteoporosis (analysis of 2978 fenestrated screws). European spine journal, 27, 2348-2356.
Villena Gonzales, W., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors, 19(4), 800.
Wang, C., Tan, B., & Qian, Q. (2023). The impact of perioperative enhanced recovery nursing model on postoperative delirium and rehabilitation quality in elderly patients with femoral neck fractures. BMC Musculoskeletal Disorders, 24(1), 947.
Wang, J., Ma, J.-X., Lu, B., Bai, H.-H., Wang, Y., & Ma, X.-L. (2020). Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatology: Surgery & Research, 106(1), 95-101.
Wang, L., Yu, W., Yin, X., Cui, L., Tang, S., Jiang, N., Cui, L., Zhao, N., Lin, Q., & Chen, L. (2021). Prevalence of osteoporosis and fracture in China: the China osteoporosis prevalence study. JAMA network Open, 4(8), e2121106-e2121106.
Weiser, L., Huber, G., Sellenschloh, K., Viezens, L., Püschel, K., Morlock, M. M., & Lehmann, W. (2018). Time to augment?! Impact of cement augmentation on pedicle screw fixation strength depending on bone mineral density. European spine journal, 27, 1964-1971.
Winkler, T., Sass, F., Duda, G., & Schmidt-Bleek, K. (2018). A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone & joint research, 7(3), 232-243.
Xu, R., Ru, J., Ji, F., Liu, J., Ji, Y., Wu, Z., & Shi, D. (2018). Comparison of efficacy, complications and TGF‑β2 expression between DHS and PFNA in elderly patients with osteoporotic femoral intertrochanteric fracture. Experimental and Therapeutic Medicine, 16(1), 394-399.
Yang, Y. O., Xu, S., & Wong, M. K. (2020). Surgical Fixation of Subtrochanteric Fracture in Patient with Cancellous Screw Fixation for Neck of Femur Fracture: Surgical Decision-Making and Outcome. Journal of Orthopaedic Case Reports, 9(6), 44.
Yee, D. K., Lau, W., Tiu, K. L., Leung, F., Fang, E., Pineda, J. P. S., & Fang, C. (2020). Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Archives of Orthopaedic and Trauma Surgery, 140, 1957-1964.
Yousuf, N., Olayiwola, O., Guo, B., & Liu, N. (2021). A comprehensive review on the loss of wellbore integrity due to cement failure and available remedial methods. Journal of Petroleum Science and Engineering, 207, 109123.
Yu, W., Jiang, X., Zhang, H., Yao, Z., Zhong, Y., Tang, F., & Cai, D. (2023). The incidence and risk factors for extensive epidural cement leakage in cement-augmented pedicle screw fixation: a multicenter retrospective study. Archives of Orthopaedic and Trauma Surgery, 1-8.
Yu, Y., Pan, K., & Wang, G. (2020). Femoral trochanteric fracture: PFNA spiral blade placement with the aid of an angler. Journal of International Medical Research, 48(3), 0300060519890782.
Zheng, L., Chen, X., Zheng, Y., He, X., Wu, J., & Lin, Z. (2021). Cement augmentation of the proximal femoral nail antirotation for the treatment of two intertrochanteric fractures-a comparative finite element study. BMC Musculoskeletal Disorders, 22, 1-13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ramadan Mohamed Elsaid Ahmed
This work is licensed under a Creative Commons Attribution 4.0 International License.