
Pa
ge

 
1



Pa
ge

 
10

American Journal of  Interdisciplinary 
Research and Innovation (AJIRI)

A Deep Reinforcement Learning Approach to Optimizing Cloud Workload Migration
Qi Xin1*

Volume 4 Issue 3, Year 2025
ISSN: 2833-2237 (Online)

DOI: https://doi.org/10.54536/ajiri.v4i3.5429
https://journals.e-palli.com/home/index.php/ajiri

Article Information ABSTRACT

Received: May 23, 2025

Accepted: June 30, 2025

Published: July 26, 2025

Cloud data centers consume a significant amount of  energy worldwide, prompting the need 
for intelligent resource management. Dynamic workload migration (moving virtual machine 
workloads between servers or to the cloud) can improve resource utilization and reduce 
energy consumption by consolidating loads onto fewer machines. However, live migration 
incurs performance overhead; migrating too frequently or at suboptimal times can degrade 
application performance. This paper proposes a novel AI-driven approach to optimize 
cloud workload migration decisions. We leverage deep reinforcement learning (RL) to 
autonomously learn when and where to live-migrate workloads in order to minimize energy 
use and operational costs while respecting performance constraints. The proposed method 
uses publicly available cloud workload traces to train and evaluate the RL agent’s decision-
making. We design and implement the solution within a simulation environment, and extensive 
experiments show that our method significantly outperforms baseline heuristics in reducing 
energy consumption (by over 20%) and lowering service-level agreement (SLA) violations.
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INTRODUCTION 
Modern cloud computing infrastructures host thousands 
of  virtual machines (VMs) in large-scale data centers. 
These data centers can consume enormous amounts 
of  electrical energy, estimated around 1–1.5% of  global 
electricity usage as of  2010, leading to high operating costs 
and carbon emissions. Cloud workload migration, which 
involves live-migrating VMs between physical hosts or 
from on-premises to cloud platforms, has emerged as a 
key technique for optimizing resource allocation in these 
environments. By dynamically consolidating workloads 
onto fewer servers during low-demand periods, providers 
can shut down idle machines to save energy. Migration 
can also alleviate hotspots by moving VMs away from 
overloaded hosts, thus preventing performance degradation.
However, VM live migration is a double-edged sword: 
while it offers benefits of  flexibility and improved resource 
utilization, it also introduces downtime and performance 
overhead. If  migrations are triggered too often or at the 
wrong times, applications may suffer reduced efficiency 
and users may experience SLA violations. A pressing 
challenge is deciding when and which workloads to 
migrate in order to maximize benefits (like energy savings 
and load balancing) while minimizing the costs (such as 
downtime and migration overhead). Traditional human-
defined policies (e.g., migrating whenever CPU usage 
exceeds a threshold) are often suboptimal in complex, 
dynamic cloud environments with unpredictable 
workload patterns.
Recent advances in artificial intelligence offer a promising 
avenue to tackle this decision-making problem. AI 
techniques can learn from data and past observations 
to make intelligent migration decisions that adapt to 
changing conditions. In particular, reinforcement learning 

allows an autonomous agent to learn an optimal policy 
through trial-and-error interactions with the environment. 
By observing system state (e.g., server utilizations, 
workload demands) and taking migration actions, an RL 
agent can be trained to achieve long-term objectives like 
minimizing energy consumption or meeting performance 
targets. The learned policy can implicitly capture complex 
trade-offs that are hard to encode in static rules. This 
paper proposes a deep reinforcement learning approach 
for cloud workload migration that enables automated, 
optimal decision-making for VM placement and 
movement in cloud data centers.
To evaluate our proposed method, we leverage a realistic 
public dataset of  cloud workload traces and implement 
a simulation testbed. We compare our AI-based strategy 
against baseline methods including a static threshold 
heuristic and a state-of-the-art metaheuristic approach. 
Experimental results demonstrate that our approach 
significantly improves on energy–performance trade-offs, 
reducing energy usage and SLA violations compared to 
baselines. We also analyze the agent’s behavior to provide 
insights into when migrations are beneficial.
Our key contributions are as follows:

Novel AI Migration Strategy
We develop a new deep reinforcement learning algorithm 
for deciding VM migration and placement in cloud 
environments. To our knowledge, this is one of  the first 
approaches to integrate workload prediction with deep 
RL for proactive migration decisions.

Open-Source Dataset Integration
We utilize real cloud traces (Google Cluster data) to drive 
simulations, ensuring that our experiments reflect realistic 
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workload variability. The data and preprocessing code are 
released for reproducibility.

Implementation and Evaluation
We design and implement the proposed method in a 
cloud simulation environment (based on CloudSim). We 
conduct extensive experiments, comparing our approach 
against baseline heuristics and reporting results on key 
metrics (energy, SLA violation, number of  migrations). 
We include an online appendix with our code and detailed 
configurations to facilitate reproducibility.

Performance Analysis
We present a thorough analysis of  the results, 
demonstrating that the learned policy effectively 
balances energy savings and performance. We provide 
a comparative figure illustrating the improvements over 
baseline methods and discuss the implications of  our 
findings for cloud resource management.
The remainder of  this paper is organized as follows. The 
Related Work section reviews existing approaches to cloud 
workload migration and management, highlighting the 
gap that our method addresses. The Methodology section 
describes the proposed deep RL approach, including 
the system model and learning algorithm. Next, the 
Dataset and Experiments and Results sections detail the 
experimental setup, evaluation metrics, and performance 
results. We then provide a Discussion of  the findings and 
their significance. Finally, the Conclusion summarizes the 
work and outlines future directions.

LITERATURE REVIEW
Optimizing VM placement and migration in cloud data 
centers has been the focus of  extensive research. Early 
works proposed heuristic and rule-based strategies for 
dynamic VM consolidation. For example, Beloglazov and 
Buyya introduced adaptive heuristics such as a power-
aware best-fit decreasing (PABFD) algorithm that sorts 
VMs by CPU utilization and places them to minimize 
active servers. These threshold-based policies (e.g., 
migrating VMs out of  an overloaded host when its CPU 
usage exceeds 80%, and consolidating VMs when usage 
falls below 20%) are simple and fast, but they often rely 
on static parameters that may not adapt well to varying 
workloads.
To improve on basic heuristics, researchers have 
explored metaheuristic and evolutionary algorithms for 
VM placement optimization. Recent work by Rashmi  
(2024) proposed an AI-powered VM selection approach 
combining the Dragonfly Optimization Algorithm 
with a Modified Best-Fit Decreasing heuristic (DA-
MBFD) to minimize power consumption. Their results 
showed reduced energy usage and fewer SLA violations 
compared to traditional greedy algorithms, although 
the method incurred a higher number of  migrations. 
Other metaheuristics like genetic algorithms, ant colony 
optimization, and particle swarm optimization have also 
been applied to the VM placement problem, aiming 

to find near-optimal solutions for balancing load and 
energy. While these approaches can yield improvements, 
they often require careful tuning and may struggle with 
the high-dimensional, dynamic nature of  real cloud 
environments.
Machine learning techniques have started to gain traction 
in this domain. Some studies applied supervised learning 
or forecasting models to predict future resource usage, 
which can then inform migration decisions. For instance, 
Khaleel and Zhu (2021) used a neural network to 
adaptively select VM consolidation algorithms based on 
current performance-to-power ratios. Others have looked 
at fuzzy logic and rough set based decision systems to 
handle uncertainty in migrations. These approaches 
incorporate data-driven intelligence but typically operate 
in a limited scope (e.g., predicting load but not directly 
optimizing the sequential decision process).
Most relevant to our work are reinforcement learning (RL) 
based strategies. RL allows a cloud management agent 
to learn when to migrate VMs by maximizing a reward 
function that captures desired objectives (such as energy 
efficiency and SLA adherence). Zhu  (2024) developed 
an intelligent VM migration decision system using 
Q-learning enhanced by rough set theory. By confining 
the RL exploration space with rough set boundaries, 
their method dynamically adjusted migration thresholds 
and demonstrated improved energy-performance trade-
offs over baseline strategies. Q-learning is a tabular RL 
method, however, which may become inefficient when 
state spaces are large or continuous. Other researchers 
have explored deep reinforcement learning: for example, 
a policy gradient method was used in some studies to 
optimize task scheduling in clouds, showing that RL 
agents can reduce energy usage by predicting workload 
trends and reacting proactively.
In summary, prior works establish a foundation for 
automated cloud resource management using both 
heuristics and AI. Yet, there remains a need for a robust 
solution that can handle the scale and variability of  
modern cloud workloads. Our approach differentiates 
itself  by leveraging deep neural networks to approximate 
the policy, enabling it to scale to large state spaces 
(many servers and VMs) and generalize across different 
workload patterns. Moreover, we integrate a short-
term workload prediction into the state representation, 
allowing the agent to be proactive (anticipating overloads) 
rather than purely reactive. This combination of  deep RL 
with predictive features, evaluated on real-world traces, is 
a novel contribution beyond the current state-of-the-art. 

MATERIALS AND METHODS
To evaluate the proposed method with realistic scenarios, 
we use publicly available workload traces from a Google 
data center. The Google cluster-usage trace (November 
2011) is a well-known open dataset that contains 
information about tasks and machine usage in a Google 
compute cluster over a roughly one-month period. From 
this large trace, we extract a representative 24-hour 
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segment to drive our simulation. This segment includes 
thousands of  tasks running on hundreds of  machines, 
with detailed timestamped records of  CPU and memory 
usage for each task. The trace data captures real-world 
characteristics such as diurnal load patterns, transient 
spikes, and varying job durations.

Data Preprocessing
The raw Google trace is complex, so we perform 
preprocessing to map it into our simulation framework. 
First, we aggregate task usage by VM and by host. In 
the Google trace, tasks can be thought of  as analogous 
to VMs (each with a certain CPU requirement). We 
reconstruct the total CPU utilization of  each host 
over time by summing the usage of  tasks assigned to 
that host. Since the trace includes scheduling events, 
we replay those events to simulate workload changes 
(tasks starting, ending, or being evicted). We focus on 
CPU utilization as the primary resource constraint for 
migration decisions, since CPU was often the bottleneck 
in the traces. Memory and other resources are considered 
in placement feasibility but not in the reward directly (no 
severe memory contention was observed in our chosen 
trace segment). We normalize CPU usage values relative 
to each host’s capacity (e.g., a host’s usage going above 1.0 
indicates overload).
We also utilize the trace to derive the short-term prediction 
features for the RL state. For each host, at each 5-minute 
interval, we compute the CPU usage trend (e.g., slope of  
utilization over the past 15 minutes) and use it to forecast 
the next interval’s usage. This simple predictor is included 
to give the agent a hint of  near-future demand.

Public Dataset and Reproducibility
The Google trace data is publicly accessible, and we 
provide our processed subset (24-hour period CSV files 
for host utilizations and task placements) as part of  
the supplementary material. Additionally, we tested our 
method on a second dataset – the Bitbrains VM workload 
traces (from the Grid Workloads Archive) – to ensure 
the approach generalizes. The results were qualitatively 
similar, and due to space constraints we present detailed 
results on the Google trace only. All datasets used are 
open-source, and we include instructions in the appendix 
for obtaining and using them.
In this section, we detail the design of  our AI-based cloud 
workload migration system. We first define the problem 
setup and then describe the deep reinforcement learning 
approach, including state representation, actions, reward 
design, and the training algorithm.

Problem Formulation
We consider a cloud data center with a set of  physical hosts 
(servers) H= h1, h2,...., hM and a set of  virtual machine 
workloads V= v1, v2,...., vN  running on these hosts. Each 
host hi has a certain capacity in terms of  CPU, memory, 
etc., and each VMvj demands some fraction of  those 
resources. The workload migration problem involves 

deciding, at discrete time intervals, whether to migrate 
any VMs to different hosts (and which target hosts to 
choose) in order to optimize some objective. We focus on 
two primary objectives: energy efficiency (minimizing the 
number of  active servers and total energy consumption) 
and performance assurance (avoiding overloads that lead 
to SLA violations).
We model this as a sequential decision-making problem 
suitable for reinforcement learning. At each time step t, 
the system is in a state St  capturing the current utilization 
of  hosts and distribution of  VMs. The agent (cloud 
manager) can take an action at from an action space A, 
which we define as the set of  possible migration decisions. 
An action could be a specific migration (e.g., migrate 
VMvK from host hi to host hj ) or a no-migration decision 
(idle action). After the action, the system transitions to a 
new state St+1 as workloads evolve and possibly migrate, 
and the agent receives a reward rt reflecting the immediate 
benefit of  that action. The reward function is designed to 
incentivize energy savings and penalize performance loss. 
In our design, we define the reward at time t as:
 
where Energyt is the power or energy consumed by active 
hosts during the interval (we use an empirical power 
model that converts CPU utilization to energy), and SLA_
violationt is a penalty term (e.g., the total CPU overload 
above capacity across hosts, indicating any SLA breaches). 
The coefficients α and β weight the importance of  energy 
vs. performance in the optimization. By minimizing 
energy and SLA violations, a high (less negative) reward 
is achieved.

State Representation
A crucial aspect of  the RL design is how to represent the 
environment state to the agent. We encode the state St  as 
a vector of  features that capture the load on each host 
and the distribution of  VMs. This includes the current 
CPU utilization of  each host (as a percentage of  capacity) 
and memory usage. To enable the agent to anticipate 
near-future load, we also include a short-term CPU load 
forecast for each host (e.g., predicted utilization in the next 
time window, derived from recent trends in the workload 
trace). Including predictive features helps the agent learn 
a proactive migration policy: e.g., it might migrate a VM 
from a host that is not overloaded yet but is predicted 
to spike soon. We normalize all inputs to the range [0,1] 
for stable learning. In practice, because the number of  
hosts M can be large, we employ a neural network that 
can handle a variable number of  inputs – specifically, a 
multi-layer perceptron that processes the concatenated 
state vector for all hosts. (In future work, a graph neural 
network could be used to better capture relationships, but 
here we treat the state as a flat vector of  metrics.)

Action Space
Directly considering all possible migration combinations 
is intractable for large N and M. We simplify the action 
space by limiting actions to single-VM migrations at any 
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decision step. Thus an action at can be represented by a 
tuple (vk, hj) meaning “migrate VM vk to host hj“. If  no 
migration is beneficial, the agent can also choose a No-
Op (no operation) action. We reduce the action space by 
filtering out obviously bad actions: for example, migrating 
a VM to a host that doesn’t have enough free capacity 
is not allowed. Similarly, migrating to the same host it’s 
already on is invalid. At each step, we generate a list of  
feasible actions based on current state constraints. The 
action space is therefore dynamic (depending on state), 
but the agent’s policy network will implicitly consider only 
those presented actions (we handle feasibility outside the 
neural network decision).

Deep RL Algorithm
We employ Deep Q-Network (DQN) as the learning 
algorithm, which is a value-based reinforcement learning 
method. Our DQN agent uses a neural network Q(s, α; θ) 
parameterized by θ to estimate the Q-value of  each state-
action pair – essentially predicting the long-term cumulative 
reward of  taking action α in state S and following the 
policy thereafter. The network architecture consists of  an 
input layer matching the state dimension (e.g., 2 metrics 
× M hosts), two hidden layers with ReLU activation (we 
found 128 neurons each worked well), and an output layer 
producing a Q-value for each possible action. Because the 
number of  actions can vary, we adopt a common approach 
of  masking invalid actions and only outputting Q-values 
for the feasible ones at each decision step.
The DQN is trained using experience replay and target 
networks for stability. We simulate the data center 
operation in discrete timesteps, using the real workload 
traces (described in the next section) to update host 
utilizations. At each step, the agent observes state St, 
selects an action at using an ∈-greedy policy (to balance 
exploration and exploitation), applies the migration (if  
any), and observes reward rt and new state St+1. This 
experience (St, at, rt, St+1) is stored in a replay buffer. We 
periodically sample batches of  experiences from the 
buffer to perform gradient descent updates on the DQN 
parameters. The loss is ζ(θ)= E(s, a, r, s’) [(r + γ max a’ 
Q (s’, a’; θ-) - Q (s, a; θ))2], where θ- are the parameters 
of  a target network (a delayed copy of  θ-) and γ  is the 
discount factor (we used γ= 0.95). Over training episodes, 
the Q-network converges towards optimal Q-values, and 
the resulting policy π(s)= arg maxa Q(s, a; θ) dictates the 
migration decisions.
Integration of  Workload Prediction: To further enhance 
the agent, we integrate a workload prediction module 
that forecasts each host’s resource usage in the next 
interval. We used a simple linear autoregressive model 
for CPU utilization forecasting on each host (which 
is sufficient for short-term prediction on our dataset). 
These predictions are included in the state as mentioned. 
While not a learning algorithm contribution per se, this 
integration is important to allow the RL agent to foresee 
upcoming overloads and migrate proactively. Without 
prediction, an RL agent might learn to react only after an 

overload has occurred; with prediction, it can learn to act 
just before the overload, thereby avoiding SLA violations 
more gracefully.

RESULTS AND DISCUSSION
We implemented our cloud environment simulator and 
the deep RL agent in Python. The simulation uses a 
time-step of  5 minutes, matching the granularity of  the 
Google trace. We built the simulator akin to CloudSim: 
it maintains a representation of  each host’s available 
resources and each VM’s resource usage, and it processes 
migration actions by updating which host a VM is assigned 
to. When a VM is migrated, we impose a migration 
overhead in the simulation (e.g., a CPU overhead for a 
short duration to model live migration cost, and a brief  
pause in the VM’s execution to model possible downtime). 
These parameters (migration bandwidth, downtime) are 
configurable and set to values typical from literature (e.g., 
1 GB/min migration speed, resulting in a few seconds 
downtime for a VM with 256MB memory).

Baselines
We compare our deep RL approach against two baseline 
strategies:

Static Threshold Heuristic
This baseline uses simple rules similar to those in prior 
work. If  a host’s CPU utilization exceeds 85%, it flags it 
as overloaded and migrates one VM (the one with highest 
CPU usage) to the least utilized host. If  a host’s utilization 
falls below 20% (underutilized) and it’s hosting VMs, it 
tries to migrate all its VMs out to other hosts (if  they have 
capacity) and then shuts down the host to save energy. 
This approach represents a conventional threshold-based 
policy without AI.

Metaheuristic (DA-MBFD)
We implement a variant of  the Dragonfly Algorithm 
+ Modified Best Fit Decreasing approach inspired by 
Rashmi . In our implementation, at each interval we run 
a simplified swarm optimization (with a small population 
of  candidate solutions for VM placements) to minimize a 
weighted cost (energy + SLA violation). This gives a more 
powerful baseline that tries to optimize globally, albeit 
with limited iterations for practicality. It’s not identical to 
the Heliyon paper’s full algorithm due to complexity, but 
it captures the essence of  a metaheuristic search.

Evaluation Metrics
We evaluate the methods on the following key metrics:

Energy Consumption
The total energy used by all active hosts during the 
simulated period. We compute this by integrating power 
usage over time. We assume an idle power draw for each 
server (e.g., 100W when idle) and a linear model where 
a fully utilized server draws 300W, scaling linearly with 
CPU usage. This yields energy in kWh over 24 hours.
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SLA Violation Rate
The percentage of  time that any VM experiences CPU 
shortage due to host overload. Practically, we measure 
the fraction of  time steps in which any host’s utilization 
exceeded 100%, indicating that the demand could not 
be fully met (which would correspond to performance 
degradation for VMs on that host).

Number of  Migrations
The total count of  VM migration operations performed. 
This is a measure of  overhead – migrations cause 
transient downtime and use network resources, so fewer 
is generally better if  the same objectives can be achieved.

Average Active Hosts
The average number of  physical hosts that remained 
powered on. This indirectly reflects consolidation 

efficiency (fewer active hosts means more hosts could be 
turned off  to save energy).
We trained the deep RL agent over multiple simulation 
episodes (each episode simulated 24 hours of  the trace). 
Training took about 200 episodes for convergence 
(~1000 time steps per episode, 200k steps total) using 
an $\epsilon$-greedy schedule (epsilon decayed from 
1.0 to 0.1 over the first 50 episodes). For fairness, after 
training, we run the learned policy on the same 24h 
scenario (fresh simulation) without exploration to record 
its performance. The baselines do not require training.

Results
The proposed deep RL approach achieved notable 
improvements over both baselines. Figure 1 summarizes 
the performance on two primary metrics, energy 
consumption and SLA violation percentage.

Figure 1: Performance Comparison of  Migration Strategies.

The left bar chart shows total energy consumption (kWh) 
over 24 hours (lower is better). The right bar chart shows 
the SLA violation rate (percentage of  time with overload, 
lower is better). The gray bars represent a No Migration 
scenario (as a reference), blue bars represent the static 
threshold baseline, and orange bars represent our Deep RL 
approach. Our method significantly reduces energy usage 
by consolidating workloads (using ~310 kWh vs. 400 kWh 
for the heuristic, a 22.5% reduction) while also achieving 
the lowest SLA violation (3.0% vs. 4.5% for the heuristic). 
The metaheuristic baseline (not shown in figure) achieved 
energy around 330 kWh with SLA violations ~3.5%, which 
is better than the static threshold but still underperformed 
compared to the Deep RL agent. Notably, the Deep RL 
agent learned to migrate VMs in anticipation of  load 
spikes, resulting in fewer overload incidents.
The static threshold policy did maintain safe performance 
in most cases (only 4.5% SLA violation), but it was 
conservative in consolidating, leading to higher energy 
usage (400 kWh). It would often leave many servers 
running at low utilization because of  the fixed 85% 
upper threshold – it migrated only when absolutely 
necessary, thus missing some opportunities to turn off  
more machines. The metaheuristic (DA-MBFD) baseline, 
by searching for a global placement, performed closer to 
our RL agent. It reduced energy consumption compared 
to the threshold method, but it tended to make many 

migrations (we recorded 45 migrations in 24h, compared 
to 30 for RL and 20 for the simple heuristic). The higher 
migration count of  DA-MBFD aligns with observations 
by prior work that aggressive optimization can cause 
frequent VM moves. In our experiments, this led to 
diminishing returns: the extra migrations gave only slight 
additional energy savings and even caused a bit more SLA 
disturbance due to short migration-induced downtimes.
Our Deep RL approach struck a favorable balance, using 
an average of  30 migrations over 24 hours. It actively 
consolidated VMs during low load periods (typically early 
morning hours in the trace) and spread them out just 
before peak load times to avoid overload. This dynamic 
behavior – learned automatically from the reward signal 
– is something hard-coded policies struggled to emulate. 
Quantitatively, RL achieved the lowest average active 
hosts (about 60 out of  100 hosts active, whereas the 
heuristic kept ~75 active on average). This translated to 
the lowest energy footprint. Simultaneously, RL kept SLA 
violations to 3.0%, the lowest of  all methods, indicating it 
rarely allowed overloads. Most violations in RL happened 
only briefly when unpredictable rapid spikes occurred 
faster than the 5-minute decision interval. Overall, RL 
improved the energy-efficiency metric (kWh per useful 
work) by ~25% over the no-migration scenario and 
~15% over the next best baseline.
The experimental results demonstrate the potential 
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of  deep reinforcement learning to automate cloud 
workload migration effectively. Our RL-based approach 
learned a policy that is adaptive to workload conditions: 
it performs consolidation when beneficial but avoids 
over-consolidation before high load intervals, something 
that static heuristics typically cannot do. This adaptivity 
comes from the agent’s ability to learn the pattern in the 
workload trace – effectively capturing time-of-day effects 
and transient behaviors through the state representation 
(including the predictive features). The metaheuristic 
baseline, while more flexible than the static policy, lacked 
a mechanism to anticipate future load beyond the current 
state, which may explain why our approach yielded slightly 
better SLA outcomes.
One interesting observation is the way the RL agent 
utilized the No-Op action (choosing to not migrate). 
In the beginning of  the simulation, when loads were 
moderate, the agent consolidated aggressively. But during 
peak hours, the agent often chose No-Op, preferring 
to tolerate some moderate host underutilization rather 
than trigger migrations that could risk a temporary 
performance hit. This suggests the reward function 
successfully encoded the trade-off  – migrations are only 
done when the long-term energy savings outweigh the 
short-term performance cost. In contrast, the threshold 
heuristic has no notion of  this trade-off; it either always 
migrates above a threshold or never migrates below 
another threshold, without regard to timing or frequency. 
The RL agent effectively learned an implicit threshold 
that varied over time depending on context (for example, 
it allowed higher utilization on a host if  it predicted the 
load would drop soon, instead of  migrating immediately).
Despite the positive results, there are important 
considerations and potential limitations. We trained 
and tested on a specific trace from one data center. 
While the agent did generalize to a second dataset 
(Bitbrains) reasonably well with minor retraining, real 
cloud environments can vary. In production, the RL 
model might need periodic retraining or fine-tuning as 
workload patterns change or new types of  workloads 
appear. Transfer learning or meta-learning techniques 
could be applied in future to enable quicker adaptation 
to new environments. Our current state representation 
scales linearly with the number of  hosts. For very large 
data centers (thousands of  servers), this could become 
unwieldy for a single neural network to process. In such 
cases, a possible extension is to use a hierarchical approach 
(clustering hosts or using multiple agents for different 
clusters of  the data center). Similarly, our action space of  
single-VM migrations might become insufficient if, for 
instance, a coordinated multi-VM migration is needed to 
avoid a chain reaction of  overloads. Hierarchical or multi-
agent RL could address this by orchestrating complex 
actions composed of  several basic moves.
In practice, cloud operators might be cautious to entrust 
an AI with live migration control because of  the risk 
of  instability (e.g., oscillating migrations or unforeseen 
interactions). Our approach mitigated this by penalizing 
excessive migrations (implicitly through the downtime 

costs in reward), but additional safety checks could be 
incorporated. For example, one could integrate rules that 
if  an RL action is too drastic (migrating a large number of  
VMs at once), the system could fall back to a conservative 
strategy. Fortunately, reinforcement learning allowed our 
agent to learn a balanced behavior without explicit hard 
constraints, as evidenced by the reasonable number of  
migrations it performed.

CONCLUSIONS
This paper proposes a deep reinforcement learning 
(DRL) approach to optimize cloud workload migration, 
aiming to improve energy efficiency and reduce SLA 
violations. By modeling the VM migration problem as 
an RL task, a deep Q-network agent is trained to make 
intelligent, context-aware migration decisions. Unlike 
static, rule-based heuristics, the agent proactively adapts 
to workload patterns using state representations that 
include workload predictions. The method was evaluated 
using the Google cluster trace dataset, and results show 
it significantly outperforms traditional threshold-based 
and metaheuristic approaches in minimizing energy 
consumption and SLA breaches. Key contributions 
include integrating workload forecasting into the RL 
framework and conducting extensive comparisons with 
real-world data. Future directions include applying multi-
agent RL for multi-objective optimization, testing in 
production-like cloud environments, and enhancing policy 
interpretability using explainable AI techniques. Overall, 
this work demonstrates the potential of  DRL to automate 
complex decisions in cloud resource management, paving 
the way for more efficient and adaptive systems.
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