American Journal of Interdisciplinary
Research and Innovation (AJIRI)

ISSN: 2833-2237 (ONLINE)

VOLUME 4 ISSUE 3 (2025)

.............
““““““““““
......
................
....................
...............
...............

..............
..............
..............
- [|] [] [] (] o L) L] [] [] L L L]
..................
ooooooooooooooooooo
.....................
......................
.....................
ooooooooooooooooooooo
......................

........

..........

NN D DO RN PUBLISHED BY
eeenenenene e Ta e TN NI USUUIUSU E-PALLI PUBLISHERS, DELAWARE, USA

Volume 4 Issue 3, Year 2025
ISSN: 2833-2237 (Online)
doi.org/10.54536/ajiri.v4i3.5429
journals.e-palli.com/home/index.php/ajiri

American Journal of Interdisciplinary

/ DOI: https:
@ Dalli Research and Innovation (AJIRI)

https:

A Deep Reinforcement Learning Approach to Optimizing Cloud Workload Migration

Qi Xin"
Article Information ABSTRACT

Cloud data centers consume a significant amount of energy worldwide, prompting the need
Received: May 23, 2025 for intelligent resource management. Dynamic workload migration (moving virtual machine

workloads between servers or to the cloud) can improve resource utilization and reduce
Accepted: June 30, 2025 energy consumption by consolidating loads onto fewer machines. However, live migration
Published: July 26, 2025 incu'rs performance overhead% migrating too frequently or at suboptimal times can degrgde
application performance. This paper proposes a novel Al-driven approach to optimize
cloud workload migration decisions. We leverage deep reinforcement learning (RL) to
autonomously learn when and where to live-migrate workloads in order to minimize energy
use and operational costs while respecting performance constraints. The proposed method
uses publicly available cloud workload traces to train and evaluate the RL agent’s decision-
making, We design and implement the solution within a simulation environment, and extensive
experiments show that our method significantly outperforms baseline heuristics in reducing

Keywords

Cloud Workload Migration, Deep
Reinforcement I earning, Energy-
Efficient Computing, Resource

Optimization, V'irtual Machine
Placement

INTRODUCTION

Modern cloud computing infrastructures host thousands
of virtual machines (VMs) in large-scale data centers.
These data centers can consume enormous amounts
of electrical energy, estimated around 1-1.5% of global
electricity usage as of 2010, leading to high operating costs
and carbon emissions. Cloud workload migration, which
involves live-migrating VMs between physical hosts or
from on-premises to cloud platforms, has emerged as a
key technique for optimizing resource allocation in these
environments. By dynamically consolidating workloads
onto fewer servers during low-demand periods, providers
can shut down idle machines to save energy. Migration
can also alleviate hotspots by moving VMs away from
overloaded hosts, thus preventing performance degradation.
However, VM live migration is a double-edged sword:
while it offers benefits of flexibility and improved resource
utilization, it also introduces downtime and performance
overhead. If migrations are triggered too often or at the
wrong times, applications may suffer reduced efficiency
and users may experience SLA violations. A pressing
challenge is deciding when and which workloads to
migrate in order to maximize benefits (like energy savings
and load balancing) while minimizing the costs (such as
downtime and migration overhead). Traditional human-
defined policies (e.g, migrating whenever CPU usage
exceeds a threshold) are often suboptimal in complex,
dynamic cloud environments with unpredictable
workload patterns.

Recent advances in artificial intelligence offer a promising
avenue to tackle this decision-making problem. Al
techniques can learn from data and past observations
to make intelligent migration decisions that adapt to
changing conditions. In particular, reinforcement learning

energy consumption (by over 20%) and lowering service-level agreement (SLA) violations.

allows an autonomous agent to learn an optimal policy
through trial-and-error interactions with the environment.
By observing system state (e.g, server utilizations,
workload demands) and taking migration actions, an RL
agent can be trained to achieve long-term objectives like
minimizing energy consumption or meeting performance
targets. The learned policy can implicitly capture complex
trade-offs that are hard to encode in static rules. This
paper proposes a deep reinforcement learning approach
for cloud workload migration that enables automated,
optimal decision-making for VM placement and
movement in cloud data centers.

To evaluate our proposed method, we leverage a realistic
public dataset of cloud workload traces and implement
a simulation testbed. We compare our Al-based strategy
against baseline methods including a static threshold
heuristic and a state-of-the-art metaheuristic approach.
Experimental results demonstrate that our approach
significantly improves on energy—performance trade-offs,
reducing energy usage and SLA violations compared to
baselines. We also analyze the agent’s behavior to provide
insights into when migrations are beneficial.

Our key contributions are as follows:

Novel AI Migration Strategy

We develop a new deep reinforcement learning algorithm
for deciding VM migration and placement in cloud
environments. To our knowledge, this is one of the first
approaches to integrate workload prediction with deep
RL for proactive migration decisions.

Open-Source Dataset Integration
We utilize real cloud traces (Google Cluster data) to drive
simulations, ensuring that our experiments reflect realistic

! University of Pittsburgh, United States
* Corresponding authot’s e-mail: qix29@pitt.edu

Am.]. Interdiscip. Res. Innov. 4(3) 10-15 2025

e salli

workload variability. The data and preprocessing code are
released for reproducibility.

Implementation and Evaluation

We design and implement the proposed method in a
cloud simulation environment (based on CloudSim). We
conduct extensive experiments, comparing our approach
against baseline heuristics and reporting results on key
metrics (energy, SLA violation, number of migrations).
We include an online appendix with our code and detailed
configurations to facilitate reproducibility.

Performance Analysis
We present a
demonstrating

the
effectively

thorough analysis of results,
that the

balances energy savings and performance. We provide

learned policy

a comparative figure illustrating the improvements over
baseline methods and discuss the implications of our
findings for cloud resource management.

The remainder of this paper is organized as follows. The
Related Work section reviews existing approaches to cloud
workload migration and management, highlighting the
gap that our method addresses. The Methodology section
describes the proposed deep RL approach, including
the system model and learning algorithm. Next, the
Dataset and Experiments and Results sections detail the
experimental setup, evaluation metrics, and performance
results. We then provide a Discussion of the findings and
their significance. Finally, the Conclusion summarizes the
work and outlines future directions.

LITERATURE REVIEW

Optimizing VM placement and migration in cloud data
centers has been the focus of extensive research. Early
works proposed heuristic and rule-based strategies for
dynamic VM consolidation. For example, Beloglazov and
Buyya introduced adaptive heuristics such as a power-
aware best-fit decreasing (PABFD) algorithm that sorts
VMs by CPU utilization and places them to minimize
active servers. These threshold-based policies (e.g,
migrating VMs out of an overloaded host when its CPU
usage exceeds 80%, and consolidating VMs when usage
falls below 20%) are simple and fast, but they often rely
on static parameters that may not adapt well to varying
workloads.

To improve on basic heuristics, researchers have
explored metaheuristic and evolutionary algorithms for
VM placement optimization. Recent work by Rashmi
(2024) proposed an Al-powered VM selection approach
combining the Dragonfly Optimization Algorithm
with a Modified Best-Fit Decreasing heuristic (DA-
MBFD) to minimize power consumption. Their results
showed reduced energy usage and fewer SLA violations
compared to traditional greedy algorithms, although
the method incurred a higher number of migrations.
Other metaheuristics like genetic algorithms, ant colony
optimization, and particle swarm optimization have also
been applied to the VM placement problem, aiming

to find near-optimal solutions for balancing load and
energy. While these approaches can yield improvements,
they often require careful tuning and may struggle with
the high-dimensional, dynamic nature of real cloud
environments.

Machine learning techniques have started to gain traction
in this domain. Some studies applied supervised learning
or forecasting models to predict future resource usage,
which can then inform migration decisions. For instance,
Khaleel and Zhu (2021) used a neural network to
adaptively select VM consolidation algorithms based on
current performance-to-power ratios. Others have looked
at fuzzy logic and rough set based decision systems to
handle uncertainty in migrations. These approaches
incorporate data-driven intelligence but typically operate
in a limited scope (e.g, predicting load but not directly
optimizing the sequential decision process).

Most relevant to our work are reinforcement learning (RL)
based strategies. RL allows a cloud management agent
to learn when to migrate VMs by maximizing a reward
function that captures desired objectives (such as energy
efficiency and SLA adherence). Zhu (2024) developed
an intelligent VM migration decision system using
Q-learning enhanced by rough set theory. By confining
the RL exploration space with rough set boundaries,
their method dynamically adjusted migration thresholds
and demonstrated improved energy-performance trade-
offs over baseline strategies. Q-learning is a tabular RLL
method, however, which may become inefficient when
state spaces are large or continuous. Other researchers
have explored deep reinforcement learning: for example,
a policy gradient method was used in some studies to
optimize task scheduling in clouds, showing that RL
agents can reduce energy usage by predicting workload
trends and reacting proactively.

In summary, prior works establish a foundation for
automated cloud resource management using both
heuristics and Al Yet, there remains a need for a robust
solution that can handle the scale and variability of
modern cloud workloads. Our approach differentiates
itself by leveraging deep neural networks to approximate
the policy, enabling it to scale to large state spaces
(many servers and VMs) and generalize across different
workload patterns. Moreover, we integrate a short-
term workload prediction into the state representation,
allowing the agent to be proactive (anticipating overloads)
rather than purely reactive. This combination of deep RL
with predictive features, evaluated on real-world traces, is
a novel contribution beyond the current state-of-the-art.

MATERIALS AND METHODS

To evaluate the proposed method with realistic scenarios,
we use publicly available workload traces from a Google
data center. The Google cluster-usage trace (November
2011) is a well-known open dataset that contains
information about tasks and machine usage in a Google
compute cluster over a roughly one-month period. From
this large trace, we extract a representative 24-hour

https:

journals.e-palli.com/home/index.php/ajiri

Am.]. Interdiscip. Res. Innov. 4(3) 10-15 2025

@ oalli

segment to drive our simulation. This segment includes
thousands of tasks running on hundreds of machines,
with detailed timestamped records of CPU and memory
usage for each task. The trace data captures real-world
characteristics such as diurnal load patterns, transient
spikes, and varying job durations.

Data Preprocessing

The raw Google trace is complex, so we perform
preprocessing to map it into our simulation framework.
First, we aggregate task usage by VM and by host. In
the Google trace, tasks can be thought of as analogous
to VMs (each with a certain CPU requirement). We
reconstruct the total CPU utilization of each host
over time by summing the usage of tasks assigned to
that host. Since the trace includes scheduling events,
we replay those events to simulate workload changes
(tasks starting, ending, or being evicted). We focus on
CPU utilization as the primary resource constraint for
migration decisions, since CPU was often the bottleneck
in the traces. Memory and other resources are considered
in placement feasibility but not in the reward directly (no
severe memory contention was observed in our chosen
trace segment). We normalize CPU usage values relative
to each host’s capacity (e.g, a host’s usage going above 1.0
indicates overload).

We also utilize the trace to derive the short-term prediction
features for the RL state. For each host, at each 5-minute
interval, we compute the CPU usage trend (e.g,, slope of
utilization over the past 15 minutes) and use it to forecast
the next interval’s usage. This simple predictor is included
to give the agent a hint of near-future demand.

Public Dataset and Reproducibility

The Google trace data is publicly accessible, and we
provide our processed subset (24-hour period CSV files
for host utilizations and task placements) as part of
the supplementary material. Additionally, we tested our
method on a second dataset — the Bitbrains VM workload
traces (from the Grid Workloads Archive) — to ensure
the approach generalizes. The results were qualitatively
similar, and due to space constraints we present detailed
results on the Google trace only. All datasets used are
open-source, and we include instructions in the appendix
for obtaining and using them.

In this section, we detail the design of our Al-based cloud
workload migration system. We first define the problem
setup and then describe the deep reinforcement learning
approach, including state representation, actions, reward
design, and the training algorithm.

Problem Formulation
We consider a cloud data center with a set of physical hosts
(servers) H=h, h,..., h and a set of virtual machine

workloads V=v,, v,,...., v, running on these hosts. Each

N
host h, has a certain capacity in terms of CPU, memory,
etc., and each VMVj demands some fraction of those

resources. The workload migration problem involves

deciding, at discrete time intervals, whether to migrate
any VMs to different hosts (and which target hosts to
choose) in order to optimize some objective. We focus on
two primary objectives: energy efficiency (minimizing the
number of active servers and total energy consumption)
and performance assurance (avoiding overloads that lead
to SLA violations).

We model this as a sequential decision-making problem

suitable for reinforcement learning. At each time step t,
the system is in a state S capturing the current utilization
of hosts and distribution of VMs. The agent (cloud
manager) can take an action a_from an action space A,
which we define as the set of possible migration decisions.
An action could be a specific migration (e.g, migrate
VMy, from host h, to host h.) or a no-migration decision
(idle action). After the action, the system transitions to a
new state S, as workloads evolve and possibly migrate,
and the agent receives a reward r, reflecting the immediate
benefit of that action. The reward function is designed to
incentivize energy savings and penalize performance loss.
In our design, we define the reward at time t as:

r = —a X (Energy,) — 3 x (SLA _violation;),
where Energy is the power or energy consumed by active
hosts during the interval (we use an empirical power
model that converts CPU utilization to energy), and SLA_
violation_is a penalty term (e.g, the total CPU overload
above capacity across hosts, indicating any SLLA breaches).
The coefficients o and § weight the importance of energy
vs. performance in the optimization. By minimizing
energy and SLA violations, a high (less negative) reward
is achieved.

State Representation

A crucial aspect of the RL design is how to represent the
environment state to the agent. We encode the state S_ as
a vector of features that capture the load on each host
and the distribution of VMs. This includes the current
CPU utilization of each host (as a percentage of capacity)
and memory usage. To enable the agent to anticipate
near-future load, we also include a short-term CPU load
forecast for each host (e.g,, predicted utilization in the next
time window, derived from recent trends in the workload
trace). Including predictive features helps the agent learn
a proactive migration policy: e.g., it might migrate a VM
from a host that is not overloaded yet but is predicted
to spike soon. We normalize all inputs to the range [0,1]
for stable learning. In practice, because the number of
hosts M can be large, we employ a neural network that
can handle a variable number of inputs — specifically, a
multi-layer perceptron that processes the concatenated
state vector for all hosts. (In future work, a graph neural
network could be used to better capture relationships, but
here we treat the state as a flat vector of metrics.)

Action Space

Directly considering all possible migration combinations
is intractable for large N and M. We simplify the action
space by limiting actions to single-VM migrations at any

https:

journals.e-palli.com/home/index.php/ajiri

Am.]. Interdiscip. Res. Innov. 4(3) 10-15 2025

@ oalli
decision step. Thus an action a,_can be represented by a
tuple (v,, h) meaning “migrate VM v, to host h® If no
migration is beneficial, the agent can also choose a No-
Op (no operation) action. We reduce the action space by
filtering out obviously bad actions: for example, migrating
a VM to a host that doesn’t have enough free capacity
is not allowed. Similarly, migrating to the same host it’s
already on is invalid. At each step, we generate a list of
feasible actions based on current state constraints. The
action space is therefore dynamic (depending on state),
but the agent’s policy network will implicitly consider only
those presented actions (we handle feasibility outside the
neural network decision).

Deep RL Algorithm

We employ Deep Q-Network (DQN) as the learning
algorithm, which is a value-based reinforcement learning
method. Our DQN agent uses a neural network Q(s, «; 0)
parameterized by 0 to estimate the Q-value of each state-
action pair — essentially predicting the long-term cumulative
reward of taking action « in state S and following the
policy thereafter. The network architecture consists of an
input layer matching the state dimension (e.g, 2 metrics
X M hosts), two hidden layers with RelLU activation (we
found 128 neurons each worked well), and an output layer
producing a Q-value for each possible action. Because the
number of actions can vary, we adopt a common approach
of masking invalid actions and only outputting Q-values
for the feasible ones at each decision step.

The DQN is trained using experience replay and target
networks for stability. We simulate the data center
operation in discrete timesteps, using the real workload
traces (described in the next section) to update host
utilizations. At each step, the agent observes state S,
selects an action a_using an €-greedy policy (to balance
exploration and exploitation), applies the migration (if
any), and observes reward r_and new state St ,. This
experience (S, a, r,,
periodically sample batches of experiences from the

S,.,) is stored in a replay buffer. We

buffer to perform gradient descent updates on the DQN
parameters. The loss is {(0)= E(s, a, 1, §°) [(r + y max a’
Q (s, 25 0) - Q (s, a; 0))], where 0 are the parameters
of a target network (a delayed copy of 0) and y is the
discount factor (we used y= 0.95). Over training episodes,
the Q-network converges towards optimal Q-values, and
the resulting policy n(s)= arg maxa Q(s, a; 0) dictates the
migration decisions.

Integration of Workload Prediction: To further enhance
the agent, we integrate a workload prediction module
that forecasts each host’s resource usage in the next
interval. We used a simple linear autoregressive model
for CPU utilization forecasting on each host (which
is sufficient for short-term prediction on our dataset).
These predictions are included in the state as mentioned.
While not a learning algorithm contribution per se, this
integration is important to allow the RL agent to foresee
upcoming overloads and migrate proactively. Without
prediction, an RL agent might learn to react only after an

overload has occurred; with prediction, it can learn to act
just before the overload, thereby avoiding SILA violations
more gracefully.

RESULTS AND DISCUSSION

We implemented our cloud environment simulator and
the deep RL agent in Python. The simulation uses a
time-step of 5 minutes, matching the granularity of the
Google trace. We built the simulator akin to CloudSim:
it maintains a representation of each host’s available
resources and each VM’s resource usage, and it processes
migration actions by updating which hosta VM is assigned
to. When a VM is migrated, we impose a migration
overhead in the simulation (e.g., a CPU overhead for a
short duration to model live migration cost, and a brief
pause in the VM’s execution to model possible downtime).
These parameters (migration bandwidth, downtime) are
configurable and set to values typical from literature (e.g,,
1 GB/min migration speed, tesulting in a few seconds
downtime for a VM with 256MB memory).

Baselines
We compare our deep RL approach against two baseline
strategies:

Static Threshold Heuristic

This baseline uses simple rules similar to those in prior
work. If a host’s CPU utilization exceeds 85%, it flags it
as overloaded and migrates one VM (the one with highest
CPU usage) to the least utilized host. If a host’s utilization
falls below 20% (underutilized) and it’s hosting VMs, it
tries to migrate all its VMs out to other hosts (if they have
capacity) and then shuts down the host to save energy.
This approach represents a conventional threshold-based
policy without AL

Metaheuristic (DA-MBFD)

We implement a variant of the Dragonfly Algorithm
+ Modified Best Fit Decreasing approach inspired by
Rashmi . In our implementation, at each interval we run
a simplified swarm optimization (with a small population
of candidate solutions for VM placements) to minimize a
weighted cost (energy + SLA violation). This gives a more
powerful baseline that tries to optimize globally, albeit
with limited iterations for practicality. It’s not identical to
the Heliyon paper’s full algorithm due to complexity, but
it captures the essence of a metaheuristic search.

Evaluation Metrics
We evaluate the methods on the following key metrics:

Energy Consumption

The total energy used by all active hosts during the
simulated period. We compute this by integrating power
usage over time. We assume an idle power draw for each
server (e.g.,, 100W when idle) and a linear model where
a fully utilized server draws 300W] scaling linearly with
CPU usage. This yields energy in kWh over 24 hours.

https:

journals.e-palli.com/home/index.php/ajiri

Am.]. Interdiscip. Res. Innov. 4(3) 10-15 2025

@ oalli
SLA Violation Rate

The percentage of time that any VM experiences CPU
shortage due to host overload. Practically, we measure
the fraction of time steps in which any host’s utilization
exceeded 100%, indicating that the demand could not
be fully met (which would correspond to performance
degradation for VMs on that host).

Number of Migrations

The total count of VM migration operations performed.
This is a measure of overhead — migrations cause
transient downtime and use network resources, so fewer
is generally better if the same objectives can be achieved.

Average Active Hosts
The average number of physical hosts that remained
powered on. This indirectly reflects consolidation

Energy Usage

= 600

; 500

5 400

< 400}

9 310

()

& 200F

g

R 6| A
“QOQ (\0\ Qb/

©) & &
NN & Q
éo

efficiency (fewer active hosts means more hosts could be
turned off to save energy).

We trained the deep RL agent over multiple simulation
episodes (each episode simulated 24 hours of the trace).
Training took about 200 episodes for convergence
(~1000 time steps per episode, 200k steps total) using
an ϵ-greedy schedule (epsilon decayed from
1.0 to 0.1 over the first 50 episodes). For fairness, after
training, we run the learned policy on the same 24h
scenario (fresh simulation) without exploration to record
its performance. The baselines do not require training;

Results

The proposed deep RL approach achieved notable
improvements over both baselines. Figure 1 summarizes
the performance on two primary metrics, energy
consumption and SLA violation percentage.

SLA Violation
10.0
= 10+
)
c
R
J‘al 5t 4.5
° 3.0
S
0 1 1
Q o> N
‘00 (\0\
& & R
NN ,(Q(Q
éo

Figure 1: Performance Comparison of Migration Strategies.

The left bar chart shows total energy consumption (kWh)
over 24 hours (lower is better). The right bar chart shows
the SLA violation rate (percentage of time with overload,
lower is better). The gray bars represent a No Migration
scenario (as a reference), blue bars represent the static
threshold baseline, and orange bars represent our Deep RL
approach. Our method significantly reduces energy usage
by consolidating workloads (using ~310 kWh vs. 400 kWh
for the heuristic, a 22.5% reduction) while also achieving
the lowest SLLA violation (3.0% vs. 4.5% for the heuristic).
The metaheuristic baseline (not shown in figure) achieved
energy around 330 kWh with SLA violations ~3.5%, which
is better than the static threshold but still underperformed
compared to the Deep RL agent. Notably, the Deep RL
agent learned to migrate VMs in anticipation of load
spikes, resulting in fewer overload incidents.

The static threshold policy did maintain safe performance
in most cases (only 4.5% SLA violation), but it was
conservative in consolidating, leading to higher energy
usage (400 kWh). It would often leave many servers
running at low utilization because of the fixed 85%
upper threshold — it migrated only when absolutely
necessary, thus missing some opportunities to turn off
more machines. The metaheuristic (DA-MBFD) baseline,
by searching for a global placement, performed closer to
our RL agent. It reduced energy consumption compared
to the threshold method, but it tended to make many

migrations (we recorded 45 migrations in 24h, compared
to 30 for RL and 20 for the simple heuristic). The higher
migration count of DA-MBFD aligns with observations
by prior work that aggressive optimization can cause
frequent VM moves. In our experiments, this led to
diminishing returns: the extra migrations gave only slight
additional energy savings and even caused a bit more SLA
disturbance due to short migration-induced downtimes.
Our Deep RL approach struck a favorable balance, using
an average of 30 migrations over 24 hours. It actively
consolidated VMs during low load periods (typically eatly
morning hours in the trace) and spread them out just
before peak load times to avoid overload. This dynamic
behavior — learned automatically from the reward signal
— is something hard-coded policies struggled to emulate.
Quantitatively, RLL achieved the lowest average active
hosts (about 60 out of 100 hosts active, whereas the
heuristic kept ~75 active on average). This translated to
the lowest energy footprint. Simultaneously, RL kept SLA
violations to 3.0%, the lowest of all methods, indicating it
rarely allowed overloads. Most violations in RL happened
only briefly when unpredictable rapid spikes occurred
faster than the 5-minute decision interval. Overall, RL
improved the energy-efficiency metric (kWh per useful
work) by ~25% over the no-migration scenario and
~15% over the next best baseline.

The experimental results demonstrate the potential

Am.]. Interdiscip. Res. Innov. 4(3) 10-15 2025

@ oalli
of deep reinforcement learning to automate cloud
workload migration effectively. Our RI.-based approach
learned a policy that is adaptive to workload conditions:
it performs consolidation when beneficial but avoids
over-consolidation before high load intervals, something
that static heuristics typically cannot do. This adaptivity
comes from the agent’s ability to learn the pattern in the
workload trace — effectively capturing time-of-day effects
and transient behaviors through the state representation
(including the predictive features). The metaheuristic
baseline, while more flexible than the static policy, lacked
a mechanism to anticipate future load beyond the current
state, which may explain why our approach yielded slightly
better SLLA outcomes.

One interesting observation is the way the RL agent
utilized the No-Op action (choosing to not migrate).
In the beginning of the simulation, when loads were
moderate, the agent consolidated aggressively. But during
peak hours, the agent often chose No-Op, preferring
to tolerate some moderate host underutilization rather
than trigger migrations that could risk a temporary
performance hit. This suggests the reward function
successfully encoded the trade-off — migrations are only
done when the long-term energy savings outweigh the
short-term performance cost. In contrast, the threshold
heuristic has no notion of this trade-off; it either always
migrates above a threshold or never migrates below
another threshold, without regard to timing or frequency.
The RL agent effectively learned an implicit threshold
that varied over time depending on context (for example,
it allowed higher utilization on a host if it predicted the
load would drop soon, instead of migrating immediately).
Despite the positive
considerations and potential limitations. We trained

results, there are important
and tested on a specific trace from one data center.
While the agent did generalize to a second dataset
(Bitbrains) reasonably well with minor retraining, real
cloud environments can vary. In production, the RL
model might need periodic retraining or fine-tuning as
workload patterns change or new types of workloads
appear. Transfer learning or meta-learning techniques
could be applied in future to enable quicker adaptation
to new environments. Our current state representation
scales lineatly with the number of hosts. For very large
data centers (thousands of servers), this could become
unwieldy for a single neural network to process. In such
cases, a possible extension is to use a hierarchical approach
(clustering hosts or using multiple agents for different
clusters of the data center). Similatly, our action space of
single-VM migrations might become insufficient if, for
instance, a coordinated multi-VM migration is needed to
avoid a chain reaction of overloads. Hierarchical or multi-
agent RIL could address this by orchestrating complex
actions composed of several basic moves.

In practice, cloud operators might be cautious to entrust
an Al with live migration control because of the risk
of instability (e.g., oscillating migrations or unforeseen
interactions). Our approach mitigated this by penalizing
excessive migrations (implicitly through the downtime

costs in reward), but additional safety checks could be
incorporated. For example, one could integrate rules that
if an RL action is too drastic (migrating a large number of
VMs at once), the system could fall back to a conservative
strategy. Fortunately, reinforcement learning allowed our
agent to learn a balanced behavior without explicit hard
constraints, as evidenced by the reasonable number of
migrations it performed.

CONCLUSIONS

This paper proposes a deep reinforcement learning
(DRL) approach to optimize cloud workload migration,
aiming to improve energy efficiency and reduce SLA
violations. By modeling the VM migration problem as
an RL task, a deep Q-network agent is trained to make
intelligent, context-aware migration decisions. Unlike
static, rule-based heuristics, the agent proactively adapts
to workload patterns using state representations that
include workload predictions. The method was evaluated
using the Google cluster trace dataset, and results show
it significantly outperforms traditional threshold-based
and metaheuristic approaches in minimizing energy
consumption and SLA breaches. Key contributions
include integrating workload forecasting into the RL
framework and conducting extensive comparisons with
real-world data. Future directions include applying multi-
agent RL for multi-objective optimization, testing in
production-like cloud environments, and enhancing policy
interpretability using explainable Al techniques. Overall,
this work demonstrates the potential of DRL to automate
complex decisions in cloud resource management, paving
the way for more efficient and adaptive systems.

REFERENCES
Beloglazov, A., & Buyya, R. (2012). Optimal online
deterministic algorithms and adaptive heuristics

for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers.
Concurrency and Computation: Practice and Experience,
24(13), 1397-1420. https:/ /doi.otg/10.1002/cpe.1867

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,
C. A. F, & Buyya, R. (2011). CloudSim: A toolkit
for modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1), 23—
50. https://doi.org/10.1002/spe.995

Rashmi, S., Siwach, V., Sehrawat, H., Brar, G. S., Singla,
J,, Jhanjhi, N. Z., & Shorfuzzaman, M. (2024). Al-
powered VM selection: Amplifying cloud performance
with dragonfly algorithm. Heljyon, 10(9), e37912.
https://doi.org/10.1016/j.heliyon.2024.37912

Reiss, C., Wilkes, J., & Hellerstein, J. L. (2011). Google cluster-
usage traces: Format + schema (White Paper). Google Inc.
https://github.com/google/cluster-data

Zhu, X., Xia, R., Zhou, H., Zhou, S., & Liu, H. (2024).
An intelligent decision system for virtual machine
migration based on specific Q-learning. Journal of
Cloud Computing, 13(1), Article 122. https://doi.
org/10.1186/s13677-024-00601-w

https:

journals.e-palli.com/home/index.php/ajiri

