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In this paper, we consider the minimum gap partition problem in an undirected connected 
graph with nonnegative vertex weights. This problem involves in dividing the given graph 
into a specified number of  connected subgraphs such that the total difference between the 
largest and the smallest vertex weights in each subgraph is minimized. Namely, let G = (V, 
E, W) be a given undirected connected graph with vertex set V , edge set E, and nonnegative 
vertex weight function W : V → R+, and let k ≥ 2 be a given positive integer. The minimum 
gap partition problem consists of  constructing a partition P = {V1, V2, . . . , Vk} of  non-
empty and pairwise disjoint subsets of  V such that each vertex set Vi, i = 1, 2, . . . , k,  
induces  a  connected subgraph  G[Vi]  of   G.    The  objective of   the problem is to find 
such a partition of  V that minimizes the total difference 1≤i≤k maxv∈Viw(v) − minv∈Viw(v). 
This problem, as many other variants of  graph partition problems, is known to be NP-hard 
problem. We designed an efficient metaheuristic algorithm for finding approximate solution 
of  large-scale instances of  this problem. The quality of  the proposed algorithm is assessed 
comparing with the previous algorithms proposed for the problem.
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INTRODUCTION
An interesting optimization problem is the problem 
of  partitioning a given graph into several components 
that have specific characteristics on the vertices or the 
edges of  the components that are formed. Especially 
in the literature, the vertex-partition problems are 
much more studied than the edge-partition problems. 
Graph partition problems have many applications in 
different domains such as parallel computing, community 
detection, image processing, wireless sensor networks, 
chip and circuit design, reliability of  communication 
networks, transportation planning, cluster analysis, etc. 
Various forms of  the graph partition problem can be 
found in the literature. There is a popular problem in 
graph theory which is the graph partition problem that is 
concerned with the division of  a given connected graph 
into a prescribed number of  connected subgraphs such 
that each subgraph has approximately the same number 
of  vertices and edges. The weights of  vertices in the 
graph partition problems should be such that the total 
weight of  vertices in each subgraph is as close to one 
another as possible among different subgraphs. This 
can be achieved by minimizing the discrepancy between 
the total weights of  various subgraphs (Chlebíková, 
1996) or by adding restrictions on the total weight of  
all vertices in each subgraph (Ito et al., 2012). For the 
balanced connected partition problem, we are given a 
vertex-weighted connected graph and the number of  
vertex-disjoint connected subgraphs that the graph is to 
be partitioned into and we are required to find a partition 
such that the sum of  weights of  all vertices in each 
partition is as close as possible to the average total weight 
of  all vertices in the entire graph (Mehlhorn & Wagner, 

2000). Given an edge-weighted graph, Puerto and Sainz-
Pardo, 2023 studied the graph partition problem with the 
aim of  minimizing the weight of  the cut edges between 
the resulting components i.ethe minimum cut problem, 
cfalso the results in concerning the minimum cut problem 
(Goldschmidt & Hochbaum, 1988; Krauthgamer et al., 
2009). Recently, it is necessary to ensure that all vertices 
belonging to the same components become attached to 
a central vertex. In another study, Lari et al. (2016) gave 
various optimization problems having centered partitions 
in order to construct district maps for political elections 
of  a specific country. In contrast, Benati et al. (2017) 
introduced various approaches to clustering rationale 
data.
In addition to the type of  constrains and the objective 
functions, the graph partition problems considered in the 
literature differ on the type of  the given graph. Most of  the 
graph partition problems are NP-hard on general graphs. 
This motivates many authors to turn their attention to 
special classes of  graphs such as trees and even special 
trees such as spider trees, worms, and caterpillars (De 
Simone et al., 1990). In the special cases of  partitioning 
trees and paths, it is possible to obtain polynomial time 
algorithms. The polynomial time algorithms designed for 
partitioning special graphs such as trees and paths have 
been used for several applications. They also are useful 
in heuristic methods for partitioning gen eral graphs 
(by applying them to trees or paths obtained from the 
given graph). The authors in (Ito et al., 2012) proposed a 
polynomial time algorithm for partitioning a given vertex-
weighted tree into subtrees with weights in a specified 
range. The results  introduced polynomial time algorithms 
for partitioning trees in centered subtrees (Apollonio et 
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al., 2008; Becker et al., 1998; Becker et al., 1982;  Bruglieri 
et al., 2021). For path partitioning problem, Lucertini et 
al. (1993) presented a linear time algorithm that has been 
applied to face image degradation. Lucertini et al. (1993) 
considered the problem of  partitioning a vertex-weighted 
path into subpaths, such that the total weight of  every 
subpath lies in a specified range.
In this paper, we consider an important variant of  the 
graph partition problem. Namely, given an undirected 
connected graph of  weighted vertices, we study the 
k-Minimum Gap Partition problem (kMGP) for a 
given positive integer k ≥ 2.  The kMGP problem is an 
interesting NP-hard optimization problem that seeks to 
partition the given graph into k vertex-disjoint connected 
sub-graphs such that the total difference between the 
largest and the smallest vertex weights in each subgraph 
is minimized. The min-max version of  the kMGP 
minimizes the maximum difference between the largest 
and the smallest vertex weights in each of  the resulting 
subgraphs.
The kMGP problem is motivated by several real-world 
applications such as water distribution networks and 
modern ground irrigation systems.  To manage a large 
water distribution network efficiently, we divide it into 
subnetworks. referred to as District Metered Areas DMAs 
(De Paola et al., 2014). As such, if  the input and the 
output discharges for each district area are monitored, it is 
possible to locate the leakages more precisely. In addition 
to this, we are able to minimize water losses and prevent 
further damages by realizing a good pressure management 
through pressure control valves and turbines that 
generate power. The optimal design of  DMAs considers 
the objective of  minimizing the difference between the 
heads that are needed within the DMAs. The aim is to set 
a unique target pressure value in every DMA, and thus, to 
attain an optimal pressure regulation within the network 
with significant ground elevation changes (Gomes et al., 
2015). To model the water distribution network as a graph, 
the edges are the pipes, the vertices are the junctions of  
these pipes, and the weight of  the vertex is equal to the 
ground elevation of  the junction. Therefore, the kMGP 
represents the search for the optimal k-partition of  the 
water distribution network. Another potential use of  the 
kMGP problem is the modern ground irrigation system. 
This system is based on the equalization of  farmland as 
it leads to the uniformity of  irrigation and distribution of  
the soil salt, which helps to control the weeds, save water, 
and raise the crop productivity (Li Xiao et al., 2015). It 
may not be feasible to level an entire sloping land. In this 
regard, it is imperative to subdivide the land into plots, and 
then construct a flat terrace on each plot through proper 
earthworks. Selection of  parcels with the lowest possible 
difference of  the ground elevation allows minimizing 
the ground to be moved, and, therefore, the cost of  the 
subsequent earthworks (Albornoz et al., 2020). Proposes 
an optimization problem of  partitioning an agricultural 
field into the minimum number of  rectangular zones, 
with an upper bound on the variance of  a suitable soil 

property. The kMGP problem captures the sub-division 
of  a terrain into plots with a restricted variance in land 
characteristics such as elevation. The nodes of  the 
graph represent the locations sampled in the land, the 
weights represent their respective heights, and the edges 
connect consecutive locations. Next, we present a formal 
description of  the kMGP problem. To be self- contained, 
we first present the following well-known definitions.

LITERATURE REVIEW
Definition 1
Given a nonempty set V , the set P  = {V1, V2, . . . , Vk} 
of  nonempty subsets of  V is called a partition of  V  if

1. All  subsets  in  P  are  pairwise  disjoint,  i.e., Vi ∩ Vj  
=  ∅ for  every  i, j = 1, 2, . . . , k, i j, and

2. The union of  all subsets in P is V , i.e., ∪k
i=1Vi = V .

Definition 2
Let G = (V, E) be a given graph with vertex set V and 
edge set E. For a nonempty subset V ′ of  V , the subgraph 
G[V ′] = (V ′, E′) induced by V ′ is the subgraph of  G 
such that E′ is the set of  all edges in E that have both 
endpoints in V ′.
Let G = (V, E, W) be a given undirected connected 
graph with vertex set V , edge set E, and vertex weights 
function W : V → R+. Given a positive integer k ≥ 2, the 
kMGP problem consists of  constructing a partition P  =
{V1, V2, . . . , Vk} of  the vertex set V  such that each vertex 
set Vi, i = 1, 2, . . . , k, induces a connected subgraph 
G[Vi] of  G.  The objective of  the kMGP problem is to 
find such a partition P that minimizes Σ1≤i≤k maxv∈Vi w(v) 
−minv∈Vi w(v). The kMGP problem has been introduced 
by Bruglieri and Cordone (2016). They proved that the 
problem is NP-hard and studied a couple of  its special 
cases. Other special cases of  the problem have been 
characterized by Bruglieri and Cordone (2021).  Bruglieri 
et al. (2017) applied the basic Tabu Search heuristic 
procedure on small random instances of  the problem. 
Afterwards, Bruglieri et al. (2017) proposed a two-level 
Tabu Search algorithm and an adaptive large neighborhood 
search algorithm to solve the problem in reasonable time 
on instances with up to about 23000 vertices.  A Mixed 
Integer Linear Programming formulation of  the problem 
is presented by Bruglieri et al. (2017).
Since the kMGP problem is NP-hard, it is unlikely that 
there is a polynomial time algorithm that finds an optimal 
partition of  the problem in large graphs. Therefore, all 
practical algorithms are heuristics that differ with respect 
to time complexity as well as the quality of  the resulting 
partition. Several approximation algorithms have been 
proposed to solve different variants and special cases of  
the problem in the literature.
Tang et al. (2014) considered a related problem to the 
kMGP problem. Namely, given a vertex-weighted graph, 
they studied the problem of  partitioning the graph into 
districts and the total weight of  each district should be 
the closest possible to a given value. The problem of  
partitioning the given graph G into clusters, each of  
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which contains a given special vertex (center) such that 
the total assignment costs of  all vertices to the centers are 
minimized was addressed by Lari et al., (2016). They also 
studied a variation of  this problem where the objective is 
to minimize the sum of  the costs of  all the clusters. Hubert 
(1974) proposed the minimum diameter partitioning 
problem which is stated as follows given a set of  objects, 
divide the objects into a specified number of  clusters, so 
that the maximum dissimilarity between objects in the 
same cluster is minimized. This problem can be described 
as follows, let’s consider a vertex-weighted complete 
graph and an instance of  the kMGP problem. Especially, 
if  the objects are assigned weights and the dissimilarity 
between two objects is the difference of  their weights, 
the minimum diameter partition problem is a special 
case of  the kMGP problem on a complete graph. This 
special case of  complete graph is polynomially solvable 
(Hochbaum, 2019).
The remaining sections of  the paper are arranged as 
below. The algorithm for the kMGP problem is given 
in section 2. The quality of  the algorithm suggested is 
assessed by the analysis of  the computational experiments 
provided in Section
3. Finally, we conclude our contributions and discuss 
possible future work in Section 4.

Driving Training-Based Optimization Algorithm 
(DTBO): An Overview
The driving training-based optimization algorithm 
(DTBO) is one of  the most recent metaheuristic 
algorithms proposed by Dehghani et al. for dealing 
with the optimization problems in real-world scenarios 
(Dehghani, 2022). DTBO emulates the behaviour of  a 
human being in the driving training. The driving instructor 
training program and the learning process for new drivers 
in driving schools were the main sources of  inspiration 
for the DTBO design. Driving training offers a smart way 
of  training a new driver to acquire the skills for driving. 
A novice as a student driver has a choice of  instructors 
when registering at a driving school. The learner driver is 
then taught the instructions and skills by the instructor. 
The learner driver attempts to be taught driving skills by 
the instructor and drives in the tracks of  the instructor. 
Moreover, independent practice can improve the learner’s 
driving skills.
The population in DTBO is members with a number 
of  including learners and instructors. The DTBO 
group members symbolize the individual answers to 
the problem at hand.Individual solutions in DTBO are 
updated according to the following three phases:

1. Driving instructor trains the learner driver 
(exploration phase). In the first stage of  the DTBO 
update, the learner driver is presented with a driving 
instructor who avails himself  or herself  to instruct the 
learner driver in driving. The best population of  the 
DTBO population is referred to as the instructors and 
the rest of  the population is the learners. After choosing 
the driving instructor and acquiring the skills, members 

of  the population will move to different places within 
the search area. This will increase the exploration rate 
of  DTBO in the search space and obtain the optimal 
position. Therefore, this stage of  the DTBO update 
demonstrates the search capacity of  the algorithm.The 
following is how this DTBO phase is mathematically 
represented: To start with, we find out the new position 
for each of  the members by applying equation 1. If  
this new position improves the value of  the objective 
function, it replaces the old one as per Equation 2.
xP1

ij= xi,j + r.(DIki,j  − I.xi,j)	 FDIki < Fi                                 (1)
xi,j + r.(xi,j − DIki,j )	otherwise
Xi = XP1     FP1

i< Fi                                                                                                                                     (2)                                    
Xi    otherwise
where XP1

i is the new position for the ith individual 
solution on the DTBO first phase P1, XP1 is its jth 
dimension, FP1 is its objective value, I is a number 
randomly selected from the set {1, 2}, r is a random 
number in the interval [0, 1]. DI is a matrix of  driving 
instructors, such that DIi is the ith driving instructor, DIi,j 
is the jth dimension. The number of  driving instructors 
is NDI = ⌊0.1 · N · (1 − t/T )⌋, where t is the current 
iteration and T  is the maximum number of  iterations.  
DIki , where ki is randomly selected from the set {1, 2, . . . 
, NDI }, represents a randomly selected driv ing instructor 
to train the ith member, DIki,j is its jth dimension, and FDIk 
is its objective value.

2. Patterning the learner driver from instructor  skills  
(exploration  phase). The learner driver imitates the 
instructor in the second phase of  the DTBO update, 
trying to mimic all of  the instructor’s movements and  
driving skills. The DTBO’s exploration rate is increased 
by this procedure, which moves members to a set of  
points in the search area. To mathematically model this 
idea, a new position is formed as a linear combination 
between every member and the teacher as defined by 
Equation.

3. If  the value of  the objective function is better for 
this new position, it shall replace the previous position as 
indicated by equation 4.
xP2

ij = P.xi,j + (1 − P ).DIki ,j                                                                            (3)
Xi = XP2

i     F
P2

i < Fi                                               (4)
Xi    otherwise
where XP2

i   is the new calculated status for the ith candidate 
solution based on the second phase of  DTBO, XP2

ij is its 
jth dimension, XP2

i is its objective function value, and P is 
the patterning index given by Equation 5.
P = 0.01 + 0.9(1 − t/T )	                                           (5)

4. Personal practice of  the learner driver (exploitation 
phase). The third phase of  the DTBO update is based 
on each learner driver’s individual practice of  enhancing 
and improving their driving skills.   In this phase, each 
learner driver aims to attain his highest level of  skills. This 
phase allows each member to find a better position based 
on a local search around its current position. As a result, 
this phase of  the DTBO update reveals the exploitation 
ability of  the algorithm. To mathematically model this 
phase, a random position is first created close to each 
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member of  the population using Equation 6. After that, 
if  this position enhances the objective value, it replaces 
the prior position in accordance with Equation 7.
xP3

ij= x + (1 − 2r).R.(1 − t/T).x                                   (6)
Xi  = XP3

i     F
P3

i < Fi                                                    (7)
Xi    otherwise
where XP3

i  is the new calculated status for the ith 
candidate solution based on the third phase of  DTBO, 
xP3

ij is its jth dimension, XP3
i is its objective function value, 

r is a random real number of  the interval [0, 1], R is the 
constant set to the value 0.05, t is the counter of  iterations 
and T is the maximum number of  iterations.

3. The Proposed IDTBO Algorithm
This section introduces a new version of  the DTBO 
algorithm for the kMGP problem. The standard DTBO 
was proposed to tackle continuous problems. This 
motivated us to propose an  improved  driving  training-
based  optimization algorithm (IDTBO), which is a 
discrete variation of  the DBTO algorithm. Each learner 
driver represents a feasible solution for the problem. The 
driving instructors represent the best solutions. To update 
the position of  each individual solution in IDTBO, multi-
point crossover, mutation and swap operators are applied 
to the original equations of  the three DTBO phases.
The steps of  the proposed IDTBO algorithm are 
illustrated in Algorithm 1 and are explained in more 
depth below.

Representation
For a specific instance of  the kMGP problem, each 
individual solution denotes a feasible partition. The 
solution (partition) is represented by a binary matrix 
P with dimensions k × n, where k is the number of  
subgraphs and n is the number of  vertices of  the graph. 
Each  matrix  element  pij  ∈ {0, 1},  i.e.,  i  =  1, 2, . . . , 
k  and  j  =  1, 2, . . . , n. The  element  pij  is  set  to  1  if   
the  vertex  j  belongs  to  subgraph  i  and  0 otherwise. 
An illustrative example is shown in Figure 1.

IDTBO Initialization

Figure 1:  An example of  a representation of  an 
individual solution.

The initial population is created by applying the random 
initialization technique. More precisely, each vertex is 
assigned to a random subgraph selected from a set of  k 
subgraphs. As long as there are n vertices, we compute 
each solution in the initial population by periodically 
using this straightforward technique. Using the well-
known depth first-search algorithm, each subgraph’s 
connectivity is tested. The resulted solution is added 
to the initial population only if  it induces a connected 
subgraphs. The aforementioned process is repeated 
as long as the population size is less than a predefined 

population size pop size.

Evaluation Process
According to a fitness value, each partition (individual 
solution) in the population is evaluated. Recall that, the 
objective value  of   partition  P  is Σ1≤i≤k maxv∈Vi w(v) − 
minv∈Vi w(v),  such  that P = {V1, V2, . . . , Vk}. The fitness 
value of  partition P is defined as its objective value. The 
best fittest individual solution is the one with minimum 
fitness value.

Algorithm 1 
The Proposed IDTBO Algorithm
Input: The problem size n, population size pop−
size, driving instructors number Ninst, and maximum 
iterations number maxt.
Output: The best solution (partition  with the minimum 
total difference between the largest and the smallest 
vertex weights in each subgraph).
Initialize the population at random xi , i = 1, 2, . . . , 
pop−size. Evaluate the fitness value of  all learner drivers 
(solutions) in the population. Initialize t = 1. while (t ≤ 
maxt) do for i = 1 to pop−size do. Phase 1: Learning 
from the driving instructor (exploration). Obtain the 
driving instructors set using a fitness values comparison. 
Select random driving instructor from the set of  
instructors. Compute the new position for xi learner 
driver using Equation 8. Update the position of  xi learner 
driver using Equation 9. Phase 2: Learner driver patterns 
the instructor’s skills (exploration). Compute the new 
position for xi learner driver using Equation 10. Update 
the position of  xi learner driver using Equation 11. Phase 
3: Personal practice (exploitation). Compute the new 
position for xi learner driver using Equation 12. Update 
the position of  xi learner driver using Equation 13. End 
for Evaluate the fitness value of  all new population 
solutions. Update the best solutions (driving instructors). 
t = t + 1. End while return the best solution.

Updating Process
According to the standard DTBO, all individual solutions 
are updated according to three phases over the course 
of  iterations. We adjusted the DTBO’s original equations 
and arithmetic operators in the three phases to make 
them more suited to our problem. Multi-point crossover, 
mutation and swap operators are integrated into the 
proposed algorithm to satisfy this modification.
The following are the position updating equations for the 
three phases:

1. Training the learner driver by the driving instructor 
(exploration). Initially,  a set of  the population’s best 
solutions are chosen to serve as the driving instructors. 
Formally, we select a set of  Ninst driving instructors from 
the population with Ninst = pop_size , where pop_size is the 
population size. Each individual solution in the first phase 
of  IDTBO is updated according to Equation 8. According 
to Equation 9, the new solution replaces the old one if  it 
minimizes the value of  the objective function.
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xP1 = xi ⊕ r ⊗ (xinst − xi)                                               (8)
xi = xP1

i         F
P1

xi< Fxi                                                     (9)
xi otherwise
where xP1

i   is the new computed status for the xi current 
solution based on the first phase of  IDTBO and FP1

xi is 
its fitness value. r is a random number in the range of  
[0, 1] and the operator ⊕ is a combination operator. 
The operator ⊗ means the probability of  r that all swap 
operators are selected from the set of  swap sequence (xinst 
− xi), where xinst is a random driving instructor selected 
from the set of  driving instructors {1, 2, . . . , Ninst}.
Figure 2 illustrates an example of  extracting a swap 
operator from (xinst − xi). Suppose xi and xinst are two 
partitions as seen in Figure 2. First, a random vertex is 
selected from the set of  vertices whose positions in xi and 
xinst disagree. Then, the swap operator is  created  by  its  
position  in  the  two  partitions,  i.e.,  vl(Vi, Vj),  where l 
= 1, 2, . . . , n and i, j = 1, 2, . . . , k. For example, the swap 
operator v4(V1, V2),  where V1  is the position of  v4  in xi  
and V2  in xinst,  means v4 can be swapped from V1 to 
V2. Finally, xi is updated using the selected swap operator 
as shown in Figure 2. After every update, the depth first 
search algorithm is applied to verify that subgraphs are 
connected.

Figure 2: An example of  generating a swap operator 
between two solutions.

2. Patterning the learner driver from instructor skills 
(exploration). The learner driver uses the crossover 
process to mimic all of  the instructor’s moves and skills 
during the second IDTBO phase. Each learner driver 
(individual solution) in this phase of  IDTBO is updated 
according to Equation 10 and 11.
xP2

i   = xi ⊞ xinst                                                          (10)
xi = xP2

i         F
P2

xi< Fxi                                                     (11)
xi otherwise
where xP2

i is the new computed status for the xi solution 
based on the second phase of  IDTBO and FP2

xi is its 
fitness value. The operator ⊞ is a crossover operator, it 
means applying crossover between xi and xinst. Figure 3 
illustrates an example of  crossover process. A multipoint 
crossover operator is applied with m random points 
selected from the  two  partitions  xi  and  xinst  with  m  =  
log n,  where  n  is the number of  vertices. The segments 
between m points are then swapped between xi and xinst 
to get a new partition. We consider the new generated 
partition the new status of xi. To increase the exploration 
rate, we apply the crossover process with a probability 
of  0.9.

3. Personal practice of  the learner driver (exploitation). 
During this phase of  IDTBO, each learner driver applies 
the mutation process in an attempt to get closer to his 
best skills. The position of  each learner driver is updated 
according to Equation 12 and 13.
xP3 = R ⊡ xi                                                                                                            (12)
xi = xP3

i         F
P3

xi< Fxi                                                     (13)
xi otherwise 
where xP3

i   is the new computed status for the xi solution 
based on the third phase of  IDTBO and FP3

xi is its fitness 
value. The operator ⊡ represents a mutation operator. A 
swap mutation operator is applied on xi with a probability 
R. In order to fulfill the exploitation process, we set R = 
0.2. Figure 4 illustrates an example of  mutation process.

Figure 3: An example of  crossover process.

Last Steps of  IDTBO
The proposed IDTBO selects the best solution (partition 
with the minimum total difference between the largest 
and the smallest vertex weights in each subgraph) after a 
fixed number of  iterations.

METHODOLOGY
To prove the efficiency of  IDTBO, we test it on some 
random instances of  the kMGP problem. In addition, 
the performance of  IDTBO is benchmarked with that 
of  other meta-heuristic algorithms, GA (Engelbrecht, 
2007), PSO (Kennedy & Eberhart, 1995), GWO (Mirjalili 
et al., 2014), and ChOA algorithm (Khishe & Mosavi., 
2020). All the algorithms were implemented in MATLAB 
R2016a, and the machine used for the running the 
MATLAB program has Windows 10 64-bit operating 

Figure 4: An example of  mutation process.
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system, Intel Core i7-7500U processor having 2.70 GHz, 
and 16 GB of  RAM.

Figure 5: Flowchart of  the proposed IDTBO.

Parameter Configuration
The IDTBO algorithm is evaluated on random instances 
generated by the Erdos and Renyi method (Erdos & 
Renyi, 1959).   Graphs in the sizes of  50, 100, 150, 200, 
and 250 are generated at random, and the vertex weights 
are chosen from a uniform distribution in the range of  
[1, 100]. The graphs are partitioned into k subgraphs with 
values 2, 3, 4, and 5.
The population size and maximum number of  iterations 
values changed according to the graph size.  Based on 
experiments, the population size (pop  size) is set to n/5 
and the maximum number of  iterations  (maxt)  is  set  
to  n/2, where n is the number of  vertices of  the graph. 
Each algorithm performs 20 independent runs for each 
instance size. Table 1 list all parameters and their values.

Table 1: Parameter configuration for IDTBO
Parameter Value
Graph sizes (n) 50, 100, 150, 200, 250
Number of  subgraphs (k) 2, 3, 4, 5
Population size (pop size) n/5
Number of  iterations (maxt) n/2
Number of  independent runs 20

over 20 runs for each graph size. Bold values denotes 
the best values. Table 2 demonstrates that IDTBO gives 
superior results in terms of  the best and worst fitness 
over the majority of  instances. The average fitness values 
for all algorithms over 20 runs for each graph size are 
depicted in Figure 6. The figure shows that the IDTBO 
has attained the minimum average fitness value in most 
cases.
The convergence of  the proposed IDTBO in comparison 
to other metaheuris tic algorithms can be seen for 
all graph sizes in Figure 7. According to the figure’s 
observation, IDTBO outperformed all other algorithms 

Table 2: Fitness values of  the IDTBO and other 
metaheuristics over all instances.
Algorithm Fitness n = 

50
n = 
100

n = 
150

n = 
200

n = 
250

GA
Best 33 81 128 160 328
Worst 36 85 142 166 337

PSO
Best 44 88 126 166 310
Worst 53 92 127 170 312

GWO
Best 35 85 107 137 307
Worst 37 90 110 140 311

ChOA
Best 31 82 105 134 298
Worst 35 85 111 137 300

IDTBO
Best 25 74 107 119 201
Worst 26 89 109 125 205

Results and Analysis
The first experiment compares the IDTBO’s fitness 
values to those of  other well-known metaheuristic 
algorithms (GA, PSO, GWO, ChOA). The comparison in 
Table 2 is according to the best and worst fitness values 

RESULTS AND DISCUSSION
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Figure 6: Total average fitness of  IDTBO compared with other algorithms over all instances.

and demonstrated superior convergence performance 
over the majority of  the graph sizes. Hence, we can 
conclude that the IDTBO avoided early convergence 
in most graph sizes by achieving a balance between 
exploration and exploitation throughout the course of  
the three phases.
Another experiment is carried out to compare the 
IDTBO with other algorithms according to the average 
and maximum relative errors between the solutions of  
the algorithms and the optimal ones. Optimal solutions 

determined by taking into account all possibilities of  
feasible partitions in the underlying graphs. The results 
of  all algorithms are displayed in Table 3 based on 
the average and maximum relative errors over 20 runs 
for each graph size. The following is the relative error 
calculation formula:
Rler = (Falg − Fopt)/ Fopt × 100 %	                           (14)
where Falg stands for the fitness values obtained by 
the proposed algorithms. The optimal fitness value is 
represented by Fopt. The best results are highlighted in 

Figure 7: The convergence of  proposed IDTBO compared with other metaheuristics.
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Table 3: Comparison between IDTBO and other metaheuristics according to the average and maximum relative error.

n
GA PSO GWO ChOA IDTBO

avger maxer avger maxer avger maxer avger maxer avger maxer

50 0.184 0.196 0.237 0.362 0.147 0.189 0.135 0.168 0.117 0.151
100 0.191 0.207 0.285 0.394 0.175 0.195 0.166 0.185 0.133 0.148
150 0.232 0.286 0.373 0.495 0.211 0.228 0.27 0.289 0.193 0.215
200 0.377 0.46 0.518 0.608 0.322 0.39 0.302 0.318 0.281 0.325
250 0.53 0.566 0.637 0.682 0.421 0.436 0.337 0.389 0.351 0.375

Figure 8: Average running time of  IDTBO compared with other algorithms over all instances.

bold font in Table 3. Observation of  this table reveals 
that IDTBO has a higher performance than other 
metaheuristic algorithms. In particular, IDTBO has the 
minimum values for the average and maximum relative 
errors for most graph sizes. Table 3 leads us to the 

conclusion that the IDTBO can obtain near optimal 
solutions for a majority of  graph sizes. Figure 8 depicts 
the average running time in seconds for all algorithms 
over 20 runs for each graph size.

CONCLUSION
We have studied the k Minimum Gap Partition problem 
(kMGP) in an undirected connected graph with 
nonnegative vertex weights. The problem involves in 
partitioning the given graph into k connected subgraphs 
such that the total difference between the largest and 
the smallest vertex weights in the resulting subgraphs is 
minimized. The kMGP problem is known to be NP-hard. 
It has several real-world applications that motivate the 
importance of  designing and implementing algorithms 
that find near optimal partitions in reasonable time.
We have designed an improved driving training-based 
optimization algorithm (IDTBO) for the kMGP problem. 
In IDTBO, variables are permuted using a swap operator. 
Moreover, multi-point crossover and mutation operators 
are integrated in IDTBO. The proposed IDTBO is 
compared to various well-known metaheuristic algorithms 
(GA, PSO, GWO, and ChOA) in order to verify its 
effectiveness and assess its performance. According to 
the findings of  experiments, IDTBO performed better 
than other algorithms for most instances. Future research 
could focus on studying various problem variations with 
various objective functions and constraints. Developing 
and implementing novel, more effective algorithms for 
this problem will be interesting as well.
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