
Pa
ge

1

4

Pa
ge

1

American Journal of Interdisciplinary
Research and Innovation (AJIRI)

An Improved Driving Training-Based Optimization Algorithm for the Minimum Gap
Graph Connected Partition Problem

Ehab Morsy1*, Riham Moharam1

Volume 3 Issue 4, Year 2024
ISSN: 2833-2237 (Online)

DOI: https://doi.org/10.54536/ajiri.v3i4.2530
https://journals.e-palli.com/home/index.php/ajiri

Article Information ABSTRACT

Received: August 16, 2024

Accepted: September 20, 2024

Published: September 23, 2024

In this paper, we consider the minimum gap partition problem in an undirected connected
graph with nonnegative vertex weights. This problem involves in dividing the given graph
into a specified number of connected subgraphs such that the total difference between the
largest and the smallest vertex weights in each subgraph is minimized. Namely, let G = (V,
E, W) be a given undirected connected graph with vertex set V , edge set E, and nonnegative
vertex weight function W : V → R+, and let k ≥ 2 be a given positive integer. The minimum
gap partition problem consists of constructing a partition P = {V1, V2, . . . , Vk} of non-
empty and pairwise disjoint subsets of V such that each vertex set Vi, i = 1, 2, . . . , k,
induces a connected subgraph G[Vi] of G. The objective of the problem is to find
such a partition of V that minimizes the total difference 1≤i≤k maxv∈Viw(v) − minv∈Viw(v).
This problem, as many other variants of graph partition problems, is known to be NP-hard
problem. We designed an efficient metaheuristic algorithm for finding approximate solution
of large-scale instances of this problem. The quality of the proposed algorithm is assessed
comparing with the previous algorithms proposed for the problem.

Keywords

Connected Graph Partition,
Metaheuristic Algorithms,
Minimum Gap Partition,
Optimization Algorithms

1 Department of Mathematics, Suez Canal University, Ismailia 41522, Egypt
* Corresponding author’s e-mail: ehabmorsy@science.suez.edu.eg

INTRODUCTION
An interesting optimization problem is the problem
of partitioning a given graph into several components
that have specific characteristics on the vertices or the
edges of the components that are formed. Especially
in the literature, the vertex-partition problems are
much more studied than the edge-partition problems.
Graph partition problems have many applications in
different domains such as parallel computing, community
detection, image processing, wireless sensor networks,
chip and circuit design, reliability of communication
networks, transportation planning, cluster analysis, etc.
Various forms of the graph partition problem can be
found in the literature. There is a popular problem in
graph theory which is the graph partition problem that is
concerned with the division of a given connected graph
into a prescribed number of connected subgraphs such
that each subgraph has approximately the same number
of vertices and edges. The weights of vertices in the
graph partition problems should be such that the total
weight of vertices in each subgraph is as close to one
another as possible among different subgraphs. This
can be achieved by minimizing the discrepancy between
the total weights of various subgraphs (Chlebíková,
1996) or by adding restrictions on the total weight of
all vertices in each subgraph (Ito et al., 2012). For the
balanced connected partition problem, we are given a
vertex-weighted connected graph and the number of
vertex-disjoint connected subgraphs that the graph is to
be partitioned into and we are required to find a partition
such that the sum of weights of all vertices in each
partition is as close as possible to the average total weight
of all vertices in the entire graph (Mehlhorn & Wagner,

2000). Given an edge-weighted graph, Puerto and Sainz-
Pardo, 2023 studied the graph partition problem with the
aim of minimizing the weight of the cut edges between
the resulting components i.ethe minimum cut problem,
cfalso the results in concerning the minimum cut problem
(Goldschmidt & Hochbaum, 1988; Krauthgamer et al.,
2009). Recently, it is necessary to ensure that all vertices
belonging to the same components become attached to
a central vertex. In another study, Lari et al. (2016) gave
various optimization problems having centered partitions
in order to construct district maps for political elections
of a specific country. In contrast, Benati et al. (2017)
introduced various approaches to clustering rationale
data.
In addition to the type of constrains and the objective
functions, the graph partition problems considered in the
literature differ on the type of the given graph. Most of the
graph partition problems are NP-hard on general graphs.
This motivates many authors to turn their attention to
special classes of graphs such as trees and even special
trees such as spider trees, worms, and caterpillars (De
Simone et al., 1990). In the special cases of partitioning
trees and paths, it is possible to obtain polynomial time
algorithms. The polynomial time algorithms designed for
partitioning special graphs such as trees and paths have
been used for several applications. They also are useful
in heuristic methods for partitioning gen eral graphs
(by applying them to trees or paths obtained from the
given graph). The authors in (Ito et al., 2012) proposed a
polynomial time algorithm for partitioning a given vertex-
weighted tree into subtrees with weights in a specified
range. The results introduced polynomial time algorithms
for partitioning trees in centered subtrees (Apollonio et

Pa
ge

2

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

al., 2008; Becker et al., 1998; Becker et al., 1982; Bruglieri
et al., 2021). For path partitioning problem, Lucertini et
al. (1993) presented a linear time algorithm that has been
applied to face image degradation. Lucertini et al. (1993)
considered the problem of partitioning a vertex-weighted
path into subpaths, such that the total weight of every
subpath lies in a specified range.
In this paper, we consider an important variant of the
graph partition problem. Namely, given an undirected
connected graph of weighted vertices, we study the
k-Minimum Gap Partition problem (kMGP) for a
given positive integer k ≥ 2. The kMGP problem is an
interesting NP-hard optimization problem that seeks to
partition the given graph into k vertex-disjoint connected
sub-graphs such that the total difference between the
largest and the smallest vertex weights in each subgraph
is minimized. The min-max version of the kMGP
minimizes the maximum difference between the largest
and the smallest vertex weights in each of the resulting
subgraphs.
The kMGP problem is motivated by several real-world
applications such as water distribution networks and
modern ground irrigation systems. To manage a large
water distribution network efficiently, we divide it into
subnetworks. referred to as District Metered Areas DMAs
(De Paola et al., 2014). As such, if the input and the
output discharges for each district area are monitored, it is
possible to locate the leakages more precisely. In addition
to this, we are able to minimize water losses and prevent
further damages by realizing a good pressure management
through pressure control valves and turbines that
generate power. The optimal design of DMAs considers
the objective of minimizing the difference between the
heads that are needed within the DMAs. The aim is to set
a unique target pressure value in every DMA, and thus, to
attain an optimal pressure regulation within the network
with significant ground elevation changes (Gomes et al.,
2015). To model the water distribution network as a graph,
the edges are the pipes, the vertices are the junctions of
these pipes, and the weight of the vertex is equal to the
ground elevation of the junction. Therefore, the kMGP
represents the search for the optimal k-partition of the
water distribution network. Another potential use of the
kMGP problem is the modern ground irrigation system.
This system is based on the equalization of farmland as
it leads to the uniformity of irrigation and distribution of
the soil salt, which helps to control the weeds, save water,
and raise the crop productivity (Li Xiao et al., 2015). It
may not be feasible to level an entire sloping land. In this
regard, it is imperative to subdivide the land into plots, and
then construct a flat terrace on each plot through proper
earthworks. Selection of parcels with the lowest possible
difference of the ground elevation allows minimizing
the ground to be moved, and, therefore, the cost of the
subsequent earthworks (Albornoz et al., 2020). Proposes
an optimization problem of partitioning an agricultural
field into the minimum number of rectangular zones,
with an upper bound on the variance of a suitable soil

property. The kMGP problem captures the sub-division
of a terrain into plots with a restricted variance in land
characteristics such as elevation. The nodes of the
graph represent the locations sampled in the land, the
weights represent their respective heights, and the edges
connect consecutive locations. Next, we present a formal
description of the kMGP problem. To be self- contained,
we first present the following well-known definitions.

LITERATURE REVIEW
Definition 1
Given a nonempty set V , the set P = {V1, V2, . . . , Vk}
of nonempty subsets of V is called a partition of V if

1. All subsets in P are pairwise disjoint, i.e., Vi ∩ Vj
= ∅ for every i, j = 1, 2, . . . , k, i j, and

2. The union of all subsets in P is V , i.e., ∪k
i=1Vi = V .

Definition 2
Let G = (V, E) be a given graph with vertex set V and
edge set E. For a nonempty subset V ′ of V , the subgraph
G[V ′] = (V ′, E′) induced by V ′ is the subgraph of G
such that E′ is the set of all edges in E that have both
endpoints in V ′.
Let G = (V, E, W) be a given undirected connected
graph with vertex set V , edge set E, and vertex weights
function W : V → R+. Given a positive integer k ≥ 2, the
kMGP problem consists of constructing a partition P =
{V1, V2, . . . , Vk} of the vertex set V such that each vertex
set Vi, i = 1, 2, . . . , k, induces a connected subgraph
G[Vi] of G. The objective of the kMGP problem is to
find such a partition P that minimizes Σ1≤i≤k maxv∈Vi w(v)
−minv∈Vi w(v). The kMGP problem has been introduced
by Bruglieri and Cordone (2016). They proved that the
problem is NP-hard and studied a couple of its special
cases. Other special cases of the problem have been
characterized by Bruglieri and Cordone (2021). Bruglieri
et al. (2017) applied the basic Tabu Search heuristic
procedure on small random instances of the problem.
Afterwards, Bruglieri et al. (2017) proposed a two-level
Tabu Search algorithm and an adaptive large neighborhood
search algorithm to solve the problem in reasonable time
on instances with up to about 23000 vertices. A Mixed
Integer Linear Programming formulation of the problem
is presented by Bruglieri et al. (2017).
Since the kMGP problem is NP-hard, it is unlikely that
there is a polynomial time algorithm that finds an optimal
partition of the problem in large graphs. Therefore, all
practical algorithms are heuristics that differ with respect
to time complexity as well as the quality of the resulting
partition. Several approximation algorithms have been
proposed to solve different variants and special cases of
the problem in the literature.
Tang et al. (2014) considered a related problem to the
kMGP problem. Namely, given a vertex-weighted graph,
they studied the problem of partitioning the graph into
districts and the total weight of each district should be
the closest possible to a given value. The problem of
partitioning the given graph G into clusters, each of

Pa
ge

3

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

which contains a given special vertex (center) such that
the total assignment costs of all vertices to the centers are
minimized was addressed by Lari et al., (2016). They also
studied a variation of this problem where the objective is
to minimize the sum of the costs of all the clusters. Hubert
(1974) proposed the minimum diameter partitioning
problem which is stated as follows given a set of objects,
divide the objects into a specified number of clusters, so
that the maximum dissimilarity between objects in the
same cluster is minimized. This problem can be described
as follows, let’s consider a vertex-weighted complete
graph and an instance of the kMGP problem. Especially,
if the objects are assigned weights and the dissimilarity
between two objects is the difference of their weights,
the minimum diameter partition problem is a special
case of the kMGP problem on a complete graph. This
special case of complete graph is polynomially solvable
(Hochbaum, 2019).
The remaining sections of the paper are arranged as
below. The algorithm for the kMGP problem is given
in section 2. The quality of the algorithm suggested is
assessed by the analysis of the computational experiments
provided in Section
3. Finally, we conclude our contributions and discuss
possible future work in Section 4.

Driving Training-Based Optimization Algorithm
(DTBO): An Overview
The driving training-based optimization algorithm
(DTBO) is one of the most recent metaheuristic
algorithms proposed by Dehghani et al. for dealing
with the optimization problems in real-world scenarios
(Dehghani, 2022). DTBO emulates the behaviour of a
human being in the driving training. The driving instructor
training program and the learning process for new drivers
in driving schools were the main sources of inspiration
for the DTBO design. Driving training offers a smart way
of training a new driver to acquire the skills for driving.
A novice as a student driver has a choice of instructors
when registering at a driving school. The learner driver is
then taught the instructions and skills by the instructor.
The learner driver attempts to be taught driving skills by
the instructor and drives in the tracks of the instructor.
Moreover, independent practice can improve the learner’s
driving skills.
The population in DTBO is members with a number
of including learners and instructors. The DTBO
group members symbolize the individual answers to
the problem at hand.Individual solutions in DTBO are
updated according to the following three phases:

1. Driving instructor trains the learner driver
(exploration phase). In the first stage of the DTBO
update, the learner driver is presented with a driving
instructor who avails himself or herself to instruct the
learner driver in driving. The best population of the
DTBO population is referred to as the instructors and
the rest of the population is the learners. After choosing
the driving instructor and acquiring the skills, members

of the population will move to different places within
the search area. This will increase the exploration rate
of DTBO in the search space and obtain the optimal
position. Therefore, this stage of the DTBO update
demonstrates the search capacity of the algorithm.The
following is how this DTBO phase is mathematically
represented: To start with, we find out the new position
for each of the members by applying equation 1. If
this new position improves the value of the objective
function, it replaces the old one as per Equation 2.
xP1

ij= xi,j + r.(DIki,j − I.xi,j)	 FDIki < Fi (1)
xi,j + r.(xi,j − DIki,j)	otherwise
Xi = XP1 FP1

i< Fi (2)
Xi otherwise
where XP1

i is the new position for the ith individual
solution on the DTBO first phase P1, XP1 is its jth
dimension, FP1 is its objective value, I is a number
randomly selected from the set {1, 2}, r is a random
number in the interval [0, 1]. DI is a matrix of driving
instructors, such that DIi is the ith driving instructor, DIi,j
is the jth dimension. The number of driving instructors
is NDI = ⌊0.1 · N · (1 − t/T)⌋, where t is the current
iteration and T is the maximum number of iterations.
DIki , where ki is randomly selected from the set {1, 2, . . .
, NDI }, represents a randomly selected driv ing instructor
to train the ith member, DIki,j is its jth dimension, and FDIk
is its objective value.

2. Patterning the learner driver from instructor skills
(exploration phase). The learner driver imitates the
instructor in the second phase of the DTBO update,
trying to mimic all of the instructor’s movements and
driving skills. The DTBO’s exploration rate is increased
by this procedure, which moves members to a set of
points in the search area. To mathematically model this
idea, a new position is formed as a linear combination
between every member and the teacher as defined by
Equation.

3. If the value of the objective function is better for
this new position, it shall replace the previous position as
indicated by equation 4.
xP2

ij = P.xi,j + (1 − P).DIki ,j (3)
Xi = XP2

i F
P2

i < Fi (4)
Xi otherwise
where XP2

i is the new calculated status for the ith candidate
solution based on the second phase of DTBO, XP2

ij is its
jth dimension, XP2

i is its objective function value, and P is
the patterning index given by Equation 5.
P = 0.01 + 0.9(1 − t/T)	 (5)

4. Personal practice of the learner driver (exploitation
phase). The third phase of the DTBO update is based
on each learner driver’s individual practice of enhancing
and improving their driving skills. In this phase, each
learner driver aims to attain his highest level of skills. This
phase allows each member to find a better position based
on a local search around its current position. As a result,
this phase of the DTBO update reveals the exploitation
ability of the algorithm. To mathematically model this
phase, a random position is first created close to each

Pa
ge

4

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

member of the population using Equation 6. After that,
if this position enhances the objective value, it replaces
the prior position in accordance with Equation 7.
xP3

ij= x + (1 − 2r).R.(1 − t/T).x (6)
Xi = XP3

i F
P3

i < Fi (7)
Xi otherwise
where XP3

i is the new calculated status for the ith
candidate solution based on the third phase of DTBO,
xP3

ij is its jth dimension, XP3
i is its objective function value,

r is a random real number of the interval [0, 1], R is the
constant set to the value 0.05, t is the counter of iterations
and T is the maximum number of iterations.

3. The Proposed IDTBO Algorithm
This section introduces a new version of the DTBO
algorithm for the kMGP problem. The standard DTBO
was proposed to tackle continuous problems. This
motivated us to propose an improved driving training-
based optimization algorithm (IDTBO), which is a
discrete variation of the DBTO algorithm. Each learner
driver represents a feasible solution for the problem. The
driving instructors represent the best solutions. To update
the position of each individual solution in IDTBO, multi-
point crossover, mutation and swap operators are applied
to the original equations of the three DTBO phases.
The steps of the proposed IDTBO algorithm are
illustrated in Algorithm 1 and are explained in more
depth below.

Representation
For a specific instance of the kMGP problem, each
individual solution denotes a feasible partition. The
solution (partition) is represented by a binary matrix
P with dimensions k × n, where k is the number of
subgraphs and n is the number of vertices of the graph.
Each matrix element pij ∈ {0, 1}, i.e., i = 1, 2, . . . ,
k and j = 1, 2, . . . , n. The element pij is set to 1 if
the vertex j belongs to subgraph i and 0 otherwise.
An illustrative example is shown in Figure 1.

IDTBO Initialization

Figure 1: An example of a representation of an
individual solution.

The initial population is created by applying the random
initialization technique. More precisely, each vertex is
assigned to a random subgraph selected from a set of k
subgraphs. As long as there are n vertices, we compute
each solution in the initial population by periodically
using this straightforward technique. Using the well-
known depth first-search algorithm, each subgraph’s
connectivity is tested. The resulted solution is added
to the initial population only if it induces a connected
subgraphs. The aforementioned process is repeated
as long as the population size is less than a predefined

population size pop size.

Evaluation Process
According to a fitness value, each partition (individual
solution) in the population is evaluated. Recall that, the
objective value of partition P is Σ1≤i≤k maxv∈Vi w(v) −
minv∈Vi w(v), such that P = {V1, V2, . . . , Vk}. The fitness
value of partition P is defined as its objective value. The
best fittest individual solution is the one with minimum
fitness value.

Algorithm 1
The Proposed IDTBO Algorithm
Input: The problem size n, population size pop−
size, driving instructors number Ninst, and maximum
iterations number maxt.
Output: The best solution (partition with the minimum
total difference between the largest and the smallest
vertex weights in each subgraph).
Initialize the population at random xi , i = 1, 2, . . . ,
pop−size. Evaluate the fitness value of all learner drivers
(solutions) in the population. Initialize t = 1. while (t ≤
maxt) do for i = 1 to pop−size do. Phase 1: Learning
from the driving instructor (exploration). Obtain the
driving instructors set using a fitness values comparison.
Select random driving instructor from the set of
instructors. Compute the new position for xi learner
driver using Equation 8. Update the position of xi learner
driver using Equation 9. Phase 2: Learner driver patterns
the instructor’s skills (exploration). Compute the new
position for xi learner driver using Equation 10. Update
the position of xi learner driver using Equation 11. Phase
3: Personal practice (exploitation). Compute the new
position for xi learner driver using Equation 12. Update
the position of xi learner driver using Equation 13. End
for Evaluate the fitness value of all new population
solutions. Update the best solutions (driving instructors).
t = t + 1. End while return the best solution.

Updating Process
According to the standard DTBO, all individual solutions
are updated according to three phases over the course
of iterations. We adjusted the DTBO’s original equations
and arithmetic operators in the three phases to make
them more suited to our problem. Multi-point crossover,
mutation and swap operators are integrated into the
proposed algorithm to satisfy this modification.
The following are the position updating equations for the
three phases:

1. Training the learner driver by the driving instructor
(exploration). Initially, a set of the population’s best
solutions are chosen to serve as the driving instructors.
Formally, we select a set of Ninst driving instructors from
the population with Ninst = pop_size , where pop_size is the
population size. Each individual solution in the first phase
of IDTBO is updated according to Equation 8. According
to Equation 9, the new solution replaces the old one if it
minimizes the value of the objective function.

Pa
ge

5

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

xP1 = xi ⊕ r ⊗ (xinst − xi) (8)
xi = xP1

i F
P1

xi< Fxi (9)
xi otherwise
where xP1

i is the new computed status for the xi current
solution based on the first phase of IDTBO and FP1

xi is
its fitness value. r is a random number in the range of
[0, 1] and the operator ⊕ is a combination operator.
The operator ⊗ means the probability of r that all swap
operators are selected from the set of swap sequence (xinst
− xi), where xinst is a random driving instructor selected
from the set of driving instructors {1, 2, . . . , Ninst}.
Figure 2 illustrates an example of extracting a swap
operator from (xinst − xi). Suppose xi and xinst are two
partitions as seen in Figure 2. First, a random vertex is
selected from the set of vertices whose positions in xi and
xinst disagree. Then, the swap operator is created by its
position in the two partitions, i.e., vl(Vi, Vj), where l
= 1, 2, . . . , n and i, j = 1, 2, . . . , k. For example, the swap
operator v4(V1, V2), where V1 is the position of v4 in xi
and V2 in xinst, means v4 can be swapped from V1 to
V2. Finally, xi is updated using the selected swap operator
as shown in Figure 2. After every update, the depth first
search algorithm is applied to verify that subgraphs are
connected.

Figure 2: An example of generating a swap operator
between two solutions.

2. Patterning the learner driver from instructor skills
(exploration). The learner driver uses the crossover
process to mimic all of the instructor’s moves and skills
during the second IDTBO phase. Each learner driver
(individual solution) in this phase of IDTBO is updated
according to Equation 10 and 11.
xP2

i = xi ⊞ xinst (10)
xi = xP2

i F
P2

xi< Fxi (11)
xi otherwise
where xP2

i is the new computed status for the xi solution
based on the second phase of IDTBO and FP2

xi is its
fitness value. The operator ⊞ is a crossover operator, it
means applying crossover between xi and xinst. Figure 3
illustrates an example of crossover process. A multipoint
crossover operator is applied with m random points
selected from the two partitions xi and xinst with m =
log n, where n is the number of vertices. The segments
between m points are then swapped between xi and xinst
to get a new partition. We consider the new generated
partition the new status of xi. To increase the exploration
rate, we apply the crossover process with a probability
of 0.9.

3. Personal practice of the learner driver (exploitation).
During this phase of IDTBO, each learner driver applies
the mutation process in an attempt to get closer to his
best skills. The position of each learner driver is updated
according to Equation 12 and 13.
xP3 = R ⊡ xi (12)
xi = xP3

i F
P3

xi< Fxi (13)
xi otherwise
where xP3

i is the new computed status for the xi solution
based on the third phase of IDTBO and FP3

xi is its fitness
value. The operator ⊡ represents a mutation operator. A
swap mutation operator is applied on xi with a probability
R. In order to fulfill the exploitation process, we set R =
0.2. Figure 4 illustrates an example of mutation process.

Figure 3: An example of crossover process.

Last Steps of IDTBO
The proposed IDTBO selects the best solution (partition
with the minimum total difference between the largest
and the smallest vertex weights in each subgraph) after a
fixed number of iterations.

METHODOLOGY
To prove the efficiency of IDTBO, we test it on some
random instances of the kMGP problem. In addition,
the performance of IDTBO is benchmarked with that
of other meta-heuristic algorithms, GA (Engelbrecht,
2007), PSO (Kennedy & Eberhart, 1995), GWO (Mirjalili
et al., 2014), and ChOA algorithm (Khishe & Mosavi.,
2020). All the algorithms were implemented in MATLAB
R2016a, and the machine used for the running the
MATLAB program has Windows 10 64-bit operating

Figure 4: An example of mutation process.

Pa
ge

6

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

system, Intel Core i7-7500U processor having 2.70 GHz,
and 16 GB of RAM.

Figure 5: Flowchart of the proposed IDTBO.

Parameter Configuration
The IDTBO algorithm is evaluated on random instances
generated by the Erdos and Renyi method (Erdos &
Renyi, 1959). Graphs in the sizes of 50, 100, 150, 200,
and 250 are generated at random, and the vertex weights
are chosen from a uniform distribution in the range of
[1, 100]. The graphs are partitioned into k subgraphs with
values 2, 3, 4, and 5.
The population size and maximum number of iterations
values changed according to the graph size. Based on
experiments, the population size (pop size) is set to n/5
and the maximum number of iterations (maxt) is set
to n/2, where n is the number of vertices of the graph.
Each algorithm performs 20 independent runs for each
instance size. Table 1 list all parameters and their values.

Table 1: Parameter configuration for IDTBO
Parameter Value
Graph sizes (n) 50, 100, 150, 200, 250
Number of subgraphs (k) 2, 3, 4, 5
Population size (pop size) n/5
Number of iterations (maxt) n/2
Number of independent runs 20

over 20 runs for each graph size. Bold values denotes
the best values. Table 2 demonstrates that IDTBO gives
superior results in terms of the best and worst fitness
over the majority of instances. The average fitness values
for all algorithms over 20 runs for each graph size are
depicted in Figure 6. The figure shows that the IDTBO
has attained the minimum average fitness value in most
cases.
The convergence of the proposed IDTBO in comparison
to other metaheuris tic algorithms can be seen for
all graph sizes in Figure 7. According to the figure’s
observation, IDTBO outperformed all other algorithms

Table 2: Fitness values of the IDTBO and other
metaheuristics over all instances.
Algorithm Fitness n =

50
n =
100

n =
150

n =
200

n =
250

GA
Best 33 81 128 160 328
Worst 36 85 142 166 337

PSO
Best 44 88 126 166 310
Worst 53 92 127 170 312

GWO
Best 35 85 107 137 307
Worst 37 90 110 140 311

ChOA
Best 31 82 105 134 298
Worst 35 85 111 137 300

IDTBO
Best 25 74 107 119 201
Worst 26 89 109 125 205

Results and Analysis
The first experiment compares the IDTBO’s fitness
values to those of other well-known metaheuristic
algorithms (GA, PSO, GWO, ChOA). The comparison in
Table 2 is according to the best and worst fitness values

RESULTS AND DISCUSSION

Pa
ge

7

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

Figure 6: Total average fitness of IDTBO compared with other algorithms over all instances.

and demonstrated superior convergence performance
over the majority of the graph sizes. Hence, we can
conclude that the IDTBO avoided early convergence
in most graph sizes by achieving a balance between
exploration and exploitation throughout the course of
the three phases.
Another experiment is carried out to compare the
IDTBO with other algorithms according to the average
and maximum relative errors between the solutions of
the algorithms and the optimal ones. Optimal solutions

determined by taking into account all possibilities of
feasible partitions in the underlying graphs. The results
of all algorithms are displayed in Table 3 based on
the average and maximum relative errors over 20 runs
for each graph size. The following is the relative error
calculation formula:
Rler = (Falg − Fopt)/ Fopt × 100 %	 (14)
where Falg stands for the fitness values obtained by
the proposed algorithms. The optimal fitness value is
represented by Fopt. The best results are highlighted in

Figure 7: The convergence of proposed IDTBO compared with other metaheuristics.

Pa
ge

8

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

Table 3: Comparison between IDTBO and other metaheuristics according to the average and maximum relative error.

n
GA PSO GWO ChOA IDTBO

avger maxer avger maxer avger maxer avger maxer avger maxer

50 0.184 0.196 0.237 0.362 0.147 0.189 0.135 0.168 0.117 0.151
100 0.191 0.207 0.285 0.394 0.175 0.195 0.166 0.185 0.133 0.148
150 0.232 0.286 0.373 0.495 0.211 0.228 0.27 0.289 0.193 0.215
200 0.377 0.46 0.518 0.608 0.322 0.39 0.302 0.318 0.281 0.325
250 0.53 0.566 0.637 0.682 0.421 0.436 0.337 0.389 0.351 0.375

Figure 8: Average running time of IDTBO compared with other algorithms over all instances.

bold font in Table 3. Observation of this table reveals
that IDTBO has a higher performance than other
metaheuristic algorithms. In particular, IDTBO has the
minimum values for the average and maximum relative
errors for most graph sizes. Table 3 leads us to the

conclusion that the IDTBO can obtain near optimal
solutions for a majority of graph sizes. Figure 8 depicts
the average running time in seconds for all algorithms
over 20 runs for each graph size.

CONCLUSION
We have studied the k Minimum Gap Partition problem
(kMGP) in an undirected connected graph with
nonnegative vertex weights. The problem involves in
partitioning the given graph into k connected subgraphs
such that the total difference between the largest and
the smallest vertex weights in the resulting subgraphs is
minimized. The kMGP problem is known to be NP-hard.
It has several real-world applications that motivate the
importance of designing and implementing algorithms
that find near optimal partitions in reasonable time.
We have designed an improved driving training-based
optimization algorithm (IDTBO) for the kMGP problem.
In IDTBO, variables are permuted using a swap operator.
Moreover, multi-point crossover and mutation operators
are integrated in IDTBO. The proposed IDTBO is
compared to various well-known metaheuristic algorithms
(GA, PSO, GWO, and ChOA) in order to verify its
effectiveness and assess its performance. According to
the findings of experiments, IDTBO performed better
than other algorithms for most instances. Future research
could focus on studying various problem variations with
various objective functions and constraints. Developing
and implementing novel, more effective algorithms for
this problem will be interesting as well.

REFERENCES
Albornoz, V. M., Véliz, M. I., Ortega, R., & Ortíz-Araya,

V. (2020). Integrated versus hierarchical approach for
zone delineation and crop planning under uncertainty.
Annals of Operations Research, 286, 617-634.

Apollonio, N., Lari, I., Ricca, F., Simeone, B., & Puerto, J.
(2008). Polynomial algorithms for partitioning a tree
into single‐center subtrees to minimize flat service
costs. Networks: An International Journal, 51(1), 78-89.

Becker, R., Lari, I., Lucertini, M., & Simeone, B. (1998).
Max‐min partitioning of grid graphs into connected
components. Networks: An International Journal, 32(2),
115-125.

Becker, R. I., Schach, S. R., & Perl, Y. (1982). A shifting
algorithm for min-max tree partitioning. Journal of the
ACM (JACM), 29(1), 58-67.

Benati, S., Puerto, J., & Rodriguez-Chia, A. M. (2017).
Clustering data that are graph connected. European
Journal of Operational Research, 261(1), 43-53.

Bruglieri, M., & Cordone, R. (2016). Partitioning a graph
into minimum gap components. Electronic Notes in
Discrete Mathematics, 55, 33-36.

Bruglieri, M., Cordone, R., & Caurio, V. (2017, June). A
metaheuristic for the minimum gap graph partitioning
problem. In Proceedings of the 15th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization (pp.

Pa
ge

9

https://journals.e-palli.com/home/index.php/ajiri

Am. J. Interdiscip. Res. Innov. 3(4) 1-9 2024

23-26).
Bruglieri, M., & Cordone, R. (2021). Metaheuristics

for the minimum gap graph partitioning problem.
Computers & Operations Research, 132, 105301.

Bruglieri, M., Cordone, R., Lari, I., Ricca, F., & Scozzari,
A. (2021). On finding connected balanced partitions
of trees. Discrete Applied Mathematics, 299, 1-16.

Chlebíková, J. (1996). Approximating the maximally
balanced connected partition problem in graphs.
Information Processing Letters, 60(5), 225-230.

De Paola, F., Fontana, N., Galdiero, E., Giugni, M., degli
Uberti, G. S., & Vitaletti, M. (2014). Optimal design of
district metered areas in water distribution networks.
Procedia Engineering, 70, 449-457.

De Simone, C., Lucertini, M., Pallottino, S., & Simeone,
B. (1990). Fair dissections of spiders, worms, and
caterpillars. Networks, 20(3), 323-344.

Dehghani, M., Trojovská, E., & Trojovský, P. (2022). A
new human-based metaheuristic algorithm for solving
optimization problems on the base of simulation of
driving training process. Scientific reports, 12(1), 9924.

Engelbrecht, A. P. (2007). Computational intelligence: an
introduction. John Wiley & Sons.

Erdos, P. & Renyi, A. (1959). On random graphs. Publ.
Math 6(18), 290-297.

Goldschmidt, O., & Hochbaum, D. S. (1988, October).
Polynomial algorithm for the k-cut problem. In
[Proceedings 1988] 29th Annual Symposium on
Foundations of Computer Science (pp. 444-451). IEEE
Computer Society.

Gomes, R., Sousa, J., Muranho, J., & Marques, A. S. (2015).
Different design criteria for district metered areas in
water distribution networks. Procedia Engineering, 119,
1221-1230.

Hochbaum, D. S. (2019). Algorithms and complexity of
range clustering. Networks, 73(2), 170-186.

Hubert, L. J. (1974). Some applications of graph theory
to clustering. Psychometrika, 39(3), 283-309.

Ito, T., Nishizeki, T., Schröder, M., Uno, T., & Zhou, X.
(2012). Partitioning a weighted tree into subtrees with
weights in a given range. Algorithmica, 62, 823-841.

Kennedy, J., & Eberhart, R. (1995, November). Particle
swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks (Vol. 4, pp.
1942-1948). ieee.

Khishe, M., & Mosavi, M. R. (2020). Chimp optimization
algorithm. Expert systems with applications, 149, 113338.

Krauthgamer, R., Naor, J., & Schwartz, R. (2009, January).
Partitioning graphs into balanced components. In
Proceedings of the twentieth annual ACM-SIAM symposium
on Discrete algorithms (pp. 942-949). Society for
Industrial and Applied Mathematics.

Lari, I., Ricca, F., Puerto, J., & Scozzari, A. (2016).
Partitioning a graph into connected components with
fixed centers and optimizing cost‐based objective
functions or equipartition criteria. Networks, 67(1),
69-81.

Li Xiao, L. X., Li HongPeng, L. H., Niu DongLing,
N. D., Wang Yan, W. Y., & Liu Gang, L. G. (2015).
Optimization of GNSS-controlled land leveling
system and related experiments, 31(3), 48–55.

Lucertini, M., Perl, Y., & Simeone, B. (1993). Most uniform
path partitioning and its use in image processing.
Discrete Applied Mathematics, 42(2-3), 227-256.

Mehlhorn, K. & Wagner, U. (2000). Connected k-partition
problems. Journal of Al- gorithms, 37(1), 1-28.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf
optimizer. Advances in engineering software, 69, 46-61.

Puerto, J., & Sainz-Pardo, J. L. (2023). Partitioning a graph
constraining the weight of its cuts. Available at SSRN
4341526.

Tang, X., Soukhal, A., & T’kindt, V. (2014). Preprocessing
for a map sectorization problem by means of
mathematical programming. Annals of Operations
Research, 222, 551-569.

