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Article Information ABSTRACT

This study examines the urban expansion of Zanzibar from 1995 to 2024, utilizing Landsat
satellite imagery to highlight the role of remote sensing in understanding land-use changes
and their socio-environmental implications. By employing change detection analysis, land
cover classification techniques, and spectral separability assessments, the research quanti-
fies the spatial and temporal dynamics of urban growth. Spectral separability was evaluated
using Transformed Divergence (TD) and Jeffries-Matusita (J-M) distance metrics to ensure
reliable differentiation between land cover classes, enhancing classification accuracy. The
analysis focused particularly on urban Unguja Island and its surroundings, where significant
urban sprawl has occurred over the past three decades. Results indicate a dramatic increase
in built-up areas, rising from 2,650.5 ha in 1995 to 11,407.2 ha in 2024, corresponding to an
overall growth of 330.4%. This urban expansion has come at the expense of natural vege-
tation, which decreased by 26.3% over the study period. While water bodies have remained
relatively stable, the transformation of vegetation into urban land highlights the growing en-
vironmental pressure exerted by rapid urbanization. The classification accuracy of the study
improved over time, with overall accuracies of 78.33%, 87.22%, and 93.33% for the years
1995, 2009, and 2024, respectively. The findings emphasize the importance of implementing
sustainable urban planning and policy interventions to mitigate the adverse effects of ur-
ban sprawl on ecological sustainability. Integrating remote sensing data with socio-economic

Received: February 23, 2025
Accepted: March 26, 2025
Published: April 30, 2025

Keywords
Zanzgibar, Land Use Land Cover
Change, Spectral Separability,

Transformed Divergence, [effries-
Matusita

analysis is recommended for developing effective land management strategies in Zanzibar.

INTRODUCTION

Urban growth is a predominant global trend driven by
economic opportunity, demographic shifts, and rural-
to-urban migration. The United Nations projects that
by 2050, nearly 68% of the global population will reside
in urban areas, with most of this growth concentrated
in Asia and Africa, where urban populations are rising
rapidly (UN, 2019). Urban expansion is particularly
intense in megacities like Mumbai, Lagos, and Dhaka,
where populations are expected to double within the
next few decades due to high migration rates and
natural population increase (World Bank, 2021). As
cities grow, they consume significant land resources;
in developing regions, urban sprawl is encroaching on
agricultural and forested areas, threatening food security
and local ecosystems (Seto e al., 2020). This expansion
is transforming landscapes worldwide, contributing to
environmental challenges like habitat fragmentation and
biodiversity loss, as well as increasing the demand for
housing, infrastructure, and basic services (Angel 7 al,
2021). These trends underscore the complex challenges
governments face in managing urban growth sustainably,
ensuring cities remain livable, resilient, and equitable
spaces (UN-Habitat, 2020).

The environmental impacts of global urban growth are
substantial, with urban areas accounting for over 70% of
global greenhouse gas emissions, despite covering only
3% of Earth’s surface (UN-Habitat, 2020). Urbanization
often leads to the phenomenon of urban heat islands,
where built-up areas experience higher temperatures than

surrounding rural regions due to reduced vegetation and
increased energy use, particularly in large cities like Tokyo
and New York (Li ez a/, 2021). Additionally, expanding
urban areas place immense pressure on water resources,
as cities draw on local and regional supplies to meet the
demands of growing populations (Zhang et al., 2021).
Addressing these impacts requires integrated planning that
includes green infrastructure, energy-efficient buildings,
and compact city designs to reduce resource consumption
and mitigate environmental degradation (Satterthwaite
et al., 2020). Cities that have successfully implemented
sustainable urban planning, such as Singapore and
Stockholm, illustrate how innovative policies can manage
urban growth’s environmental impacts while enhancing
residents’ quality of life and fostering economic resilience
(Sassen, 2021).

Remote sensing, particularly through the ILandsat
mission, has revolutionized the mapping of urban growth
globally by providing comprehensive, long-term datasets
that facilitate the monitoring and analysis of land-use
changes. Since its launch in 1972, the Landsat program
has consistently delivered high-quality satellite imagery,
capturing detailed information on urban environments
and their expansion (US. Geological Survey, 2021). One
of the significant advantages of Landsat is its moderate
spatial resolution of 30 meters, which enables the
identification of various land cover types, including built-
up areas, vegetation, and water bodies. This capability is
crucial for urban studies, as it allows researchers to assess
impervious surface expansion, evaluate urban heat islands,
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and monitor the effects of urbanization on surrounding
ecosystems (Seto e al., 2012). The temporal resolution
of Landsat, with images acquired approximately every
16 days, provides insights into rapid urbanization
dynamics, particularly in developing regions experiencing
population influx and infrastructural pressures (Zhang ef
al., 2021). By employing advanced analytical techniques,
such as change detection and classification algorithms,
researchers can effectively quantify urban growth and
its impacts on the environment, informing sustainable
urban planning and management strategies (Tsurusaki &
Salem, 2024). Landsat’s extensive historical archive allows
for long-term studies of urbanization trends, revealing
critical insights into how cities evolve over time and the
associated socio-environmental consequences (Valero-
Jorge et al., 2024). For instance, studies have shown that
urban expansion often encroaches on agricultural and
natural landscapes, leading to habitat loss and increased
vulnerability to climate change (Sanchez-Llull e al,
2025). This highlights the necessity of integrating remote
sensing data into urban development frameworks to
ensure balanced growth that considers environmental
sustainability. Furthermore, the versatility of Landsat
imagery enables its integration with other remote sensing
platforms and ground-based data, enhancing the accuracy
of urban growth assessments and supporting evidence-
based decision-making for sustainable urban futures (Tew
et al., 2018; Chander ¢# al., 2009).

Urban growth in Zanzibar, Tanzania, reflects broader
national trends of increasing urbanization driven by rapid
population growth, tourism, and rural-to-urban migration
(World Bank, 2021). Zanzibar is the most urbanized region
in Tanzania, and its population is expanding at a rate of
approximately 4.4% annually, surpassing the mainland
average and creating significant demand for housing,
infrastructure, and services (NBS Tanzania, 2020). The
growth of the tourism sector has spurred economic
development and job creation, drawing more residents to
urban centers like Stone Town; however, it has also led
to land-use changes that encroach on coastal ecosystems,
including critical mangrove (RGoZ, 2020,
RGoZ, 2022). With limited space for urban expansion
on the island, rapid population growth contributes to
overcrowding, water shortages, and inadequate waste

forests

management systems, particularly in low-income
neighborhoods (UN-Habitat, 2021). Moreover, the urban
infrastructure in Zanzibar is struggling to keep pace with
demand, leading to challenges such as traffic congestion,
insufficient public transport, and high levels of air and
water pollution (RGoZ, 2022World Bank, 2021). In
response, the Revolutionary Government of Zanzibar
has launched the Zanzibar Urban Development Policy,
aiming to promote sustainable urban growth through
policies that improve infrastructure, support economic
diversification, and enhance environmental resilience
(RGoZ, 2020; RGoZ, 2019). However, the success of
these efforts relies heavily on sustainable land use planning
and greater investment in environmental conservation to

mitigate the pressures of urbanization on both natural
resources and community welfare (RGoZ, 2022; World
Bank, 2021).

While research on Zanzibar’s urban growth has expanded,
a critical research gap exists in utilizing spatial time series
data to comprehensively map and analyze long-term
urban expansion and its ecological impacts. Previous
studies have primarily relied on general population
metrics and localized surveys, which are limited in
capturing the spatial and temporal patterns of land-
use change over extended periods (World Bank, 2021).
However, Landsat missions, with their extensive historical
record spanning nearly five decades, offer a unique and
valuable dataset for examining urban growth dynamics
over time. The application of Land Changer Modeler in
TerrSet liberaGIS v20.01 provides a robust framework
for detecting gradual land conversion and encroachment
on existing ecosystems and agricultural land through
advanced analytical techniques such as change detection.
Existing studies have overlooked the integration of
spatial-temporal analysis essential for understanding the
progression of urbanization over decades. Therefore, this
study aims to bridge this gap by mapping Zanzibar’s urban
expansion from 1995 to 2025 using Landsat missions
and advanced change detection techniques to provide a
comprehensive understanding of urban growth patterns
and their implications for ecological sustainability.

MATERIALS AND METHODS

Study Area

The study area for this research is the urban region of
Unguja, the largest and most populous island of the
Zanzibar Archipelago, located off the coast of mainland
Tanzania in East Africa (Figure 1). Unguja is situated
between latitudes approximately 5.7°S and 6.5°S, and
longitudes 39.0°E and 39.6°E. The island covers an area
of around 1,666 square kilometers, with Zanzibar City,
its capital, located on the central-western coast. The
city comprises two main parts: Stone Town, a historic
urban area designated as a UNESCO World Heritage
Site, and Ng’ambo, a rapidly growing urban area that
has undergone significant expansion over the past few
decades. Zanzibar experiences a tropical monsoon
climate characterized by two distinct rainy seasons: the
long rains (Masika) from March to May, and the short
rains (Vuli) from October to December (Mohamed
et al., 2023a). The average annual temperature ranges
from 25°C to 30°C, with high humidity levels due to its
coastal location. Zanzibar City serves as the political,
economic, and cultural hub of Zanzibar (Mohamed e#
al., 2023b). It has witnessed rapid population growth
due to rural-to-urban migration and natural population
increase. The city’s economy largely relies on tourism,
fishing, trade, and small-scale industries. The growth
of tourism has particularly driven urban development,
especially in coastal areas and transport infrastructure
(Mohamed e7 al., 2024). The urban landscape of Zanzibar
City has transformed significantly over the study period,
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with increasing built-up areas replacing vegetation and

agricultural land (Mohamed e7 a/, 2024). Key drivers
of wurbanization include population growth, tourism

development, and infrastructure expansion (Mohamed e#
al., 2023; Mohamed ef al., 2024).
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Figure 1: Study area

Data sources and pre-processing

The study utilized satellite imagery to monitor urban
changes in Zanzibar from 1995 to 2024. Landsat images
for the years 1995, 2009, and 2024 were acquired from
the US Geological Surveys FHarth Explorer portal
(http:/ /earthexplorer.usgs.gov/, last 21
December 2024) to evaluate temporal shifts in urban
land cover. Given Zanzibar’s persistent cloud cover

accessed

throughout the year, selecting suitable imagery presented
a considerable challenge. However, the use of Landsat
Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and Landsat 8 provided higher-resolution

data critical for accurate analysis. Landsat TM and ETM+
sensors each consist of seven spectral bands with a spatial
resolution of 30 meters for most bands, while their
thermal bands (band 6) have resolutions of 120 and 60
meters, respectively. Landsat 8 offers nine spectral bands
with a 30-meter resolution for most bands and includes
a 15-meter panchromatic band, enhancing spatial detail
for improved analysis. The uneven acquisition intervals
of Landsat images resulted from the region’s tropical
climate, characterized by frequent cloud cover and
rainfall, which significantly constrained the availability of
clear-sky imagery.

Table 1: The Landsat data used in the study of Zanzibar urban growth.

S/ | Satellite | Bands | Acquisition WRS Sensor | Cloud | LULC UTM | Spatial
No. | Name Used | pDate Time Path/ | Type Cover | Name Zone Resolution
Row (%) (Meters)
1 Landsat | 1-5,7 | 1995-09- | 02.25.15 | 166/64 | TM 1.2 1995 LULC | 30 N 30 X30
5 06
2 Landsat | 1-5,7 | 2009-07- | 02.38.27 | 166/64 | ETM+ | 1.5 2009 LULC | 30 N 30 X 30
7 01
3 Landsat | 01-Jul |2024-04- | 02.49,14 | 166/64 | OLL 0 2024 T.ULC | 30 N 30 X 30
8 29

The Landsat module in TerrSet liberaGIS v20.01 was
employed to enhance the quality of the Landsat images
through radiometric correction, converting raw digital
number (DN) values into surface reflectance. To minimize
atmospheric interference, the dark-object subtraction
algorithm was applied, effectively reducing atmospheric
haze effects. All images were reprojected to the UTM
Zone 30 North coordinate system to ensure spatial

consistency across datasets. Furthermore, the Landsat
images were resampled to a 15-meter spatial resolution
using the nearest neighbor resampling technique, as
recommended by Mota e al. (2022) and Aziz et al. (2015).
This resampling process enhanced the spatial detail,
enabling a more accurate analysis of urban growth
patterns in Zanzibar.
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Acquisition of field data

Ground control points were collected using an eTrex® 20
GPS Receiver (Garmin, Olathe, KS, USA) in combination
with Landsat OLI imagery, topographic maps, and aerial
photographs from the study site. These ground truth data
points were acquired in February 2024. To enhance detail
and improve color differentiation, a false-color Landsat
OLI composite (RGB—754) was applied. Transect lines
were strategically established across the study areas to
capture representative samples of homogeneous land
cover classes, including built-up areas, vegetation, and
water bodies. For each land cover class, 60 coordinates
were recorded with a precision range of 3 to 5 meters.
These coordinates were then mapped onto the resampled
Landsatimages and converted into polygons using TerrSet
Geospatial Monitoring and Modeling System (TGMMS)
v20.01 by tracing the borders of the corresponding pixels.
These polygons served as reference data, effectively
establishing regions of interest (ROIs) that accurately
represented various land cover types. The ground truth
data collection followed a comprehensive approach that
integrated aerial imagery and historical records. Aerial
surveys, including drone imagery, provided extensive
coverage and a detailed perspective of urban land cover.
Additionally, archival records, such as land use maps and
photographs obtained from the Zanzibar Department
of TForestry, were invaluable for reconstructing long-
term urban expansion trends. A thorough review of
scientific literature and government reports further
contextualized the findings, establishing a solid baseline
for understanding urban dynamics over time.

Pre-Processing of Satellite Images

Using TerrSet Geospatial Monitoring and Modeling
System (TGMMS) v20.01 software, satellite images were
pre-processed for different purposes including geometric
correction,  radiometric  calibration,  atmospheric
correction, and image enhancement. Geo-referencing
images was used to remove geometric distortions in the
acquired data and position the satellite images into a
geographical coordinate system. Pre-processing satellite
images is essential before image classification to monitor
and predict land use/cover changes (Mishra ez al., 2017).
Ground control points (GCPs) were utilized along with
reference datasets from high-resolution Google Earth
images, topographic maps, and aerial data obtained from
Zanzibar’s Department of Forestry and Department of
Land Surveying. The satellite images were rectified to
eliminate atmospheric distortions caused by variations
in sensor orientation parameters and noise from the
acquisition platform (Ma e al, 2020). This correction
significantly minimized data misinterpretation during
image classification. Additionally, image enhancement
techniques were applied to improve the visual quality
and clarity of the satellite images for subsequent analysis

(Foody, 2002).

Spectral separability

To evaluate the spectral separability of various land
cover types, their multispectral response patterns were
thoroughly analyzed. Spectral separability reflects the
statistical distance between class signatures, which
significantly influences overall classification accuracy
(Jackson & Adam, 2021). This study utilized the
Transformed Divergence (ID) index and the Jeffries-
Matusita (J-M) distance as key metrics for assessing
separability. Divergence (D) values were computed using
the mean and variance-covariance matrices of the feature
class data, following the methodology outlined by Liu e#
al. (2020).

1 1
by =3t [E - ET -+ 5o @+ I — ) — )T (D)

The Transformed Divergence (TD) metric was employed
to minimize the influence of highly separable classes,
which could otherwise skew the average divergence value
and diminish the reliability of the measure (Kavzoglu &
Mather, 2000).

-D; ]

TDij:c[l—e 8 (2)

In this context, tr[-] denotes the trace of a matrix, which
is the sum of its diagonal elements. Xi and Xj represent
the variance-covariance matrices corresponding to classes
i and j, respectively, while pi and yj are the associated
mean vectors. The constant ¢ defines the range of TD
values.

The Jeffries-Matusita (J-M) distance measures the
separability between the distributions of two classes, wi
and wj, as described by Jia ez al. (1999).

M, = 2(1-e®) 3)
where Bij represents the
calculated as (Kailath, 1967):

1 (I + L - 1 1% + I
== (- —u)+=in(=
B ij 8(#: lf’!j) ( 2 ) (.u[ .u})+2 n 2 |E[”Zj| (4‘)

In this context, ui and yj represent the mean reflectance

Bhattacharyya distance,

values for species i and j, respectively, while Xi and Xj
denote their corresponding covariance matrices. The
determinants of these matrices are given by IZil and IZjl.
The notation In refers to the natural logarithm, and T
denotes the matrix transposition operation. According
to Jensen (2005), class separability is assessed based
on the resulting value: values above 1.9 indicate good
separability, values between 1.7 and 1.9 suggest moderate
separability, and values below 1.7 imply poor or non-
existent separability.

Pairwise feature comparison

A pairwise comparison technique was used to compute
similarity scores for each pair of Landsat bands based on
the method outlined by Li e a/. (2016). The bands are
considered co-referent if their similarity score exceeds a
specified threshold. The outcomes of these comparisons
are structured into a matrix that represents the ratings
between the k — th and p - th criteria. This matrix exhibits
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reciprocity Cpk = Cip - and has unity along its diagonal
(Ckp = 1 when k = p). Table 2 presents a correlation

Table 2: Spectral separability as calculated by TD index (Equation (2)) and J-M distance (Equation (3)); BA-built areas,

V-vegetation, W-water.

matrix that illustrates the relationships between the
Landsat 8 bands.

TM (1995) ETM+ (2009) OLI (2020)
LULC Pairs TD Index | J-M Distance | TD Index J-M Distance | TD Index J-M Distance
BA/V 1.99 1.98 2.00 2.00 2.00 2.00
BA/W 2.00 2.00 2.00 2.00 2.00 2.00
V/W 2.00 2.00 2.00 2.00 2.00 2.00

Image classification

Image classificationis a widely used and effective technique
for processing satellite imagery data (Abd El-Hamid ¢z a/,
2020). This method enables the detection, identification,
and categorization of various features within an image
based on the actual land cover classes they represent on
the Farth’s surface (Huang e# 4/, 2020). The maximum
likelihood classification (MLC) algorithm was applied
to classify Landsat images due to its well-established
theoretical framework and versatility in handling vatious
data types, land use, and land cover (LULC) categories
across different satellite systems (Foody, 2002). This study
employed a supervised classification approach utilizing
the Maximum Likelihood Classifier (MLC) to classify the
acquired satellite imagery. The MLC, commonly known as
the Bayesian decision rule, is among the most frequently
applied supervised classification algorithms due to its
accessibility and straightforward training process (Huang
et al., 2020). In this technique, pixels within the satellite
images are classified based on their likelihood of belonging
to a particular land use and land cover (LULC) category.
The method operates under the assumption that all
classes have equal probabilities and that the input bands
follow a normal distribution. The study utilized specific
input bands to generate false-color composite maps. For

Table 3: Classification system for land use and land cover (LULC)

Landsat 5 TM and Landsat 7 ETM+, bands 4, 3, and 2
wete used, while for Landsat 8 OLI, bands 5, 4, and 3
were selected. The spectral signatures of individual image
pixels were compared with the training samples from the
study area to classify the satellite images into three major
land use/land cover (LULC) categoties. These categoties
included built-up or urban areas, vegetation, and water
bodies, as outlined in Table 3. As described by (Vali ¢ al,
2020; Valero-Jorge et al., 2024; World Bank, 2021), the
algorithm used to calculate the maximum likelihood (Li)
of an unknown measurement vector (x) belonging to a
specific known class (Mc) is based on the application of
the Bayesian equation, which is presented in Equation (1).
Li(x) =In p(a_c) - [0.5 In(|Cov_c]|)] - [0.5(X - M_c)"T
(Cov_c™)(X - M_c)] (5)

The discriminant function in the maximum likelihood
algorithm is represented by Li(x), where the class is
denoted as ac, with i ranging from 1 to M, where M is
the total number of classes. x is an n-dimensional vector
representing the pixel, and n corresponds to the number
of bands. p(ac) indicates the probability of class ac
at position x for a given pixel. The determinant of the
covariance matrix for the data in class ac is represented by
| Covce|, while Cove denotes the inverse of the covariance
matrix, and Mc is the mean vector for the class.

8/No. | Land Use/Land Cover Types | Description

1 Bult-up/urban Regions that encompass residential, industrial, and commercial zones,
as well as mixed-use structures, roadways, and other transportation
infrastructure.

2 Vegetation It includes agricultural and horticultural lands, crop and fallow fields,
forests, shrubs, Coconut trees, and various other types of plantations.

3 Water Bodies These areas encompass the city's permanent bodies of water, including
seawater, streams, ponds, and various reservoirs.

Accuracy assessment

In this research, an accuracy assessment of the classified
Landsat images was performed using ArcGIS version
10.1 to evaluate the reliability and effectiveness of the
classification process. The first step in the accuracy
assessment involved gathering ground truth data, which
consisted of field observations or high-resolution
reference datasets, to serve as the standard for comparison
with the classified imagery (Cohen, 1960). These reference
points were carefully selected to represent a variety of

land cover types within the study area. The confusion
matrix was generated by comparing the classified image
with the reference data. This was done by creating a
point or polygon layer that contained the reference data
and then using ArcGIS tools such as “Extract Values
to Points” to compare the ground truth values with the
classified image results. The confusion matrix, which is
typically created using the “Tabulate Area” or “Reclassify”
tool, includes key metrics such as user’s accuracy (UA),
producer’s accuracy (PA), overall accuracy, and the kappa
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statistic. The user’s accuracy (UA) and the producer’s
accuracy (PA) were calculated for each land cover class
to determine the classification’s performance from both
the user’s and the producer’s perspectives (Fleiss ef al,
2003). The overall accuracy, representing the percentage
of correctly classified pixels, was also derived from the
confusion matrix. The kappa statistic was calculated to
measure the agreement between the classified data and
the reference data, correcting for random chance. The
kappa coefficient is a statistical measure that ranges
from -1 to 1, though it typically lies between O and 1.
It is used to evaluate the degree of agreement between
observed and predicted classifications. The interpretation
of kappa values is generally categorized as follows: (i)
values between 0.00 and 0.20 indicate slight agreement,
(ii) values from 0.21 to 0.40 represent fair agreement, (iii)
values ranging from 0.41 to 0.60 correspond to moderate
agreement, (iv) values from 0.61 to 0.80 reflect substantial
agreement, and (v) values between 0.81 and 1.00 signify
near-perfect or almost perfect agreement (Zanotta ef al.,
2018). These metrics were visualized and interpreted
within ArcGIS to assess the classification quality and
guide any necessary improvements or adjustments. The
results from the accuracy assessment were used to validate
the classification method and ensure the classified image
accurately represented the land cover changes observed
in the field (Cohen, 1960). This process provided valuable
insights into the accuracy of the LULC maps and the
effectiveness of the classification approach employed in

the research.
(PC)+(NE)

Owerall Accuracy (OA} = [ m (6)
Kappa Coefficient (K) = o:a_——pp(ge) (7)

where, OA represents the overall accuracy, which refers
to the proportion of instances that are accurately
classified. Pc denotes the count of positive cases correctly
identified, while Nc refers to the number of negative
cases accurately classified. Fp corresponds to the number
of negative cases that are incorrectly labeled as positive,
and Fn represents the positive cases that are mistakenly
classified as negative. P(e) is the expected probability of
agreement by chance, calculated as the ratio of the sum
of the products of marginal probabilities for each class to
the total number of entries across all classes.

Change detection analysis

This study, the Land Change Modeler (LCM) in the
TerrSet Geospatial Monitoring and Modeling System
(TGMMS), was utilized to perform a change detection
analysis of Landsat images from 1995, 2009, and 2024
to map urban growth in Zanzibar. The primary objective
was to assess the expansion of urban areas. The analysis
focused on three main land cover classes: Build-up,
Vegetation, and Water. The first step involved classifying
the Landsat images for each period (1995, 2009, and 2024)
into the three land cover classes using TerrSet’s Maximum
Likelihood Classification (MLC) algorithm. This method
was chosen to handle the spectral variability across

different land cover types and provide a statistically sound
classification (Shivakumar ¢ a/, 2018). Ground truth data
was used to train the classification model, ensuring that
the results accurately represented the land cover types in
Zanzibar. After classification, the Land Change Modeler
was used to perform change detection between the three
time periods. The tool generates a change matrix that
compares the classified land cover maps from 1995, 2009,
and 2024, allowing for the identification of changes in the
land cover classes over time. This process reveals areas
where Build-up areas have expanded at the expense of
Vegetation or Water, and how the spatial distribution of
these classes has shifted.

The ILand Change Modeler’s “Change Detection”
module quantifies the amount of change in each land
cover class by calculating the area of transition between
different classes (Pontius & Cheuk, 20006). The analysis
showed how Vegetation and Water were converted to
Build-up areas. This allows for a clear understanding
of urban expansion patterns, including the rate and
direction of growth. The Land Change Modeler was also
used to predict future changes based on historical trends.
By analyzing the patterns of urban growth from 1995
to 2024, the tool modeled future land cover scenatios
and estimated how the Build-up area may continue to
expand, potentially encroaching on Vegetation in the
next 50 years. The results of the change detection analysis
provided a detailed view of urban growth in Zanzibar,
highlighting the transformation of land cover over the
past few decades.

RESULTS AND DISCUSSIONS

Spectral separability between land cover classes

The analysis of average spectral reflectance curves for the
land cover/use classes in the study area revealed distinct
patterns, as depicted in Figure 2. These curves, along
with their standard deviations (SDs), show considerable
spectral overlaps between the three LULC classes (Built-
up, Vegetation, and Water) across the seven Landsat
bands, especially within 1 SD. The visible bands (bands
1 to 4: coastal acrosol, blue, green, and red) exhibited the
highest level of overlap. The general reflectance trend
showed that the visible bands had the lowest values,
followed by band 7 (Short-wave Infrared 2), band 6
(Short-wave Infrared 1), and band 5 (Near Infrared).
Among these, the near-infrared band (band 5) displayed
the most noticeable reflectance differences between water
and non-water classes. Outside the range of 1 SD, only
the Near Infrared (band 5) and Short-wave Infrared
1 (band 6) bands were effective in distinguishing water
from other land cover types. These findings highlight
the significance of specific spectral bands in accurately
differentiating water from other land cover classes.

Table 2 presents the spectral separability assessment
of four LULC classes—built-up areas, water, and
vegetation—using Landsat OLI imagery (bands 1-7) and
evaluated through the Transformed Divergence (ID)
and Jeffries—Matusita (J-M) distance metrics. The analysis
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Figure 2: Mean spectral response—extracted from the Landsat OLI imagery - of land cover and land use classes in

Utrban Zanzibar.

showed that for Landsat OLI (2024), ETM+ (2009),
and TM (1995) imagery, the TD wvalues for all LULC
classes surpassed the threshold of 1.9, indicating a clear
distinction between classes. However, the assessment of
Landsat TM imagery revealed limitations in differentiating
certain classes: both the TD index and J-M distance
demonstrated poor separability between water and built-
up areas, as well as between vegetation and built-up areas.
These results suggest that the older Landsat TM sensor
has a reduced capacity for distinguishing specific LULC
classes, highlighting the superior performance of newer
sensors (ETM++, OLI) for classification tasks.

Pairwise band comparison

The pairwise correlation analysis between the Landsat
bands for the urban Zanzibar scene reveals significant
relationships among the spectral bands, particularly
within the visible spectrum. As shown in Table 3,
Bands 1 (Coastal Aecrosol), 2 (Blue), 3 (Green), and 4
(Red) exhibit extremely high correlations, with values
ranging from 0.979 to 0.999. This strong inter-band
correlation suggests that these bands capture similar
spectral information, likely due to their proximity within

the electromagnetic spectrum and their sensitivity to
surface reflectance characteristics of built-up areas
and vegetation. In contrast, Bands 5 (Near Infrared),
6 (Short-Wave Infrared 1), and 7 (Short-Wave Infrared
2) show moderate to high correlations with the visible
bands but display a noticeable decline in correlation
values, particularly with Band 5 (NIR) showing lower
correlations with Bands 1—4 (0.681 to 0.783). The higher
correlation between Bands 6 and 7 (0.961) reflects their
shared sensitivity to moisture content and built-up
surfaces, which makes them valuable for distinguishing
urban areas from vegetative and water-covered regions.
Furthermore, the correlation between Bands 5 and 6 is
notably high (0.963), emphasizing the importance of the
NIR and SWIR regions for differentiating water bodies
from other land cover classes. These findings indicate
that the near-infrared and Short-Wave Infrared bands
offer critical information that complements the visible
bands, enhancing the ability to discriminate between
urban, vegetation, and water classes. The results highlight
the need for careful selection of spectral bands when
performing classification tasks in urban environments
like Zanzibar.

Table 3: Pairwise correlations between Landsat bands for the scene covering Urban Zanzibar.
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Band1 | -——- 0.999 0.980 0.994 0.681 0.790 0.902
Band2 | |- 0.979 0.993 0.662 0.776 0.893
Band3 | | 0.985 0.783 0.868 0.936
Band4 | | 0.707 0.820 0.925
Band5 | 0 0.963 0.869
Band6 | 0.961
Band7 | e

Image classification

The analysis of land cover changes in urban Zanzibar
from 1995 to 2024 reveals a pronounced trend of
urban expansion accompanied by a substantial decline
in vegetative cover (Table 4; Figure 3). This pattern

reflects rapid urbanization driven by population growth,
infrastructure development, and the expansion of
settlements. Notably, built-up areas have significantly
increased from 2,650.5 hectares in 1995 to 5,862.4 ha in
2009 and further to 11,407.2 ha in 2024, representing a
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growth of approximately 120.9% between 1995 and 2009
and an additional 94.6% from 2009 to 2024. This rapid
increase in built-up areas underscores the aggressive
nature of urbanization within the study area, highlighting
the urgent need for sustainable urban planning and
management. Conversely, vegetation cover has been
steadily declining throughout the same period, decreasing
from 33,252.1 ha in 1995 to 29,801.8 ha in 2009 and
subsequently to 24,496.2 ha in 2024, corresponding

to an overall reduction of approximately 26.3% from
1995 to 2024. This decline in vegetation is likely due
to the conversion of natural land to built-up areas and
agricultural activities to accommodate the growing
population. In contrast, water bodies have exhibited
minimal variation over the study period, with coverage
increasing slightly from 21,773.6 ha in 1995 to 22,012.0
ha in 2009, before decreasing marginally to 21,772.8 ha
in 2024.

Table 4: Land Cover Changes in Urban Zanzibar from 1995 to 2024 (in Hectares)
LULC 1995 2009 ‘ 2024
Land Cover in Hectares
Built up 2,650.5 5,862.4 11,407.2
Vegetation 33,252.1 29,801.8 24,496.2
Water 21,773.6 22,012.0 21,772.8
URBAN GROWTH IN ZANZIBAR
o 3910°0°E 39°15'0"E 39°10'0°E 39°150'E 39°10'0"E 39°150"E »
o N o
- A ~
o »
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A . ! [
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Figure 3: Zanzibar urban growth from 1995, 2009, and 2024
The analysis of land cover changes in urban Zanzibar limited reforestation or conservation efforts. Water

over the periods 1995-2024 and 2009-2024 reveals a
consistent trend of rapid urban expansion at the expense
of vegetation cover, with minimal changes in water bodies
(Figure 4). From 2009 to 2024, built-up areas experienced
significant growth, with approximately 72,691 ha of land
converted to urban use, while only around 11,082 ha
were lost to other land covers. This net positive change
the
within the region. During the same period, vegetation
exhibited a substantial net loss of approximately 69,765
ha, with only minor gains of about 10,813 ha, suggesting

underscores aggressive urbanization occurring

bodies remained relatively stable, with a minor decrease
of 3,289 ha and a small gain of 632 ha, indicating
that urbanization has had minimal impact on aquatic
environments thus far. However, when considering the
long-term change from 1995 to 2024, the expansion
of built-up areas is even more pronounced, with gains
reaching approximately 90,000 ha. Vegetation loss during
this period is similarly alarming, with around 70,000 ha
lost and only minimal recovery. The minimal variation in
water bodies between these periods suggests a degree of
resilience or protection, although slight fluctuations could
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indicate emerging pressures from urban growth. The

overall pattern highlights the continuous and aggressive
urbanization of Zanzibar, primarily driven by population

Gains and losses between 2009 and 2024

Water-| l

Vegetation -1

Build Up |

60000 -40000 -20000 O 20000 40000 60000

Net Change between 2009 and 2024

growth, infrastructure development, and settlement
expansion.

Gains and losses between 1995 and 2024

Water I
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Figure 4: Land cover gain, loss, and net change from 1995 to 2024

Accuracy assessment

The accuracy assessment of the land use and land
cover (LULC) classification results for urban Zanzibar
demonstrates a progressive improvement in classification
accuracy over the study period from 1995 to 2024. The
overall accuracy and Kappa coefficient values indicate the
reliability and consistency of the classification process.
In 1995, the classification achieved an overall accuracy
of 78.33% with a Kappa coefficient of 0.76, reflecting
moderate agreement between the classified map and

Table 5: The overall accuracies and Kappa coefficients for LULC in urban Zanzibar

ground reference data. By 2009, the accuracy significantly
improved to 87.22% with a corresponding Kappa
coefficient of 0.84, indicating substantial agreement. This
improvement is attributed to enhanced image quality
from ETM+ and OLI satellite missions and the adoption
of more advanced classification techniques. In 2024, the
classification accuracy reached its highest level at 93.33%,
with a Kappa coefficient of 0.88, indicating a near-perfect
agreement between classification results and ground
reference data.

Year Ground data Classification results Overall accuracy (%) | Kappa coefficients
1995 180 141 78.33% 0.76
2009 180 157 87.22% 0.84
2020 180 168 93.33% 0.88

Change detection analysis

The crosstabulation analysis of 1995 and 2024 land
cover maps highlights significant land cover transitions
in urban Zanzibar, revealing notable urban expansion
and landscape dynamics (Table 6; Figure 5). The most
substantial transition is from Vegetation to Build-up,
with a conversion of approximately 9,236.88 hectares,
indicating extensive urbanization over the study period.
This change suggests the rapid transformation of
vegetated areas into urban landscapes, likely driven by
population growth, infrastructure development, and
economic activities. The persistence of Build-up areas
(1,994.7 ha) further confirms urban growth’s stability and

consolidation over nearly three decades. Additionally, the
conversion from Water to Build-up (175.5 ha) illustrates
the construction of houses, hotels, and infrastructure
development in the coastal areas. A considerable portion
of the landscape remains vegetated (23,995.3 ha),
suggesting that while urban expansion is substantial,
natural or semi-natural areas still dominate much of the
landscape. Findings also reveal that the conversion of
Build-up areas back to Vegetation (499.0 ha) is relatively
minor. The minimal transition from Water to Vegetation
(1.8 ha) is negligible and may reflect natural processes
such as sediment deposition or slight vegetative growth
along water bodies.
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Table 6: LLand cover transition from 1995 to 2024 in urban Zanzibar
No. Land cover Transition Rate of Change (in ha.)
1 Build up to Build up 1994.7
2 Vegetation to Build up 9236.8
3 Water to Build up 175.5
4 Build up to Vegetation 499.0
5 Vegetation to vegetation 23995.3
6 Water to vegetation 1.8
7 Build up to Water 156.7
8 Vegetation to Water 19.8
9 Water to water 21596.2
R 120 E P B0 E areas, or natural vegetation regrowth. The period from
. L . . 2009 to 2024 shows an even more accelerated rate of
LANDCOVER TRANSITION vegetation loss, with 6,251.4 ha being converted to built-
2 FROM 1995 TO 2024 4 up areas. During this period, 967.9 ha of built-up land
o PO FE 2| was reclaimed by vegetation. The overall analysis from
N e 1995 to 2024 indicates that a total of 9,236.8 ha of
A vegetation was converted to built-up areas, underscoring
» » the significant scale of urbanization that has taken place
53- 2 over the past 29 years. Conversely, only 499.0 ha of built-
® © up areas were reclaimed by vegetation throughout this
' period, which is relatively small compared to the vast
0 15 3 areas lost to urbanization. The findings highlight a clear
i p and consistent pattern of vegetation cover loss to urban
o 4 expansion in urban Zanzibar, with accelerated rates of
= conversion occurring between 2009 and 2024.
o o Table 7: Exchange between vegetation and build-up
£ s areas
b ° Land Cover |1995-2009 | 2009-2024 | 1995-2024
Exchange
» ~ » TLand Cover 1995-2009 | 2009-2024 | 1995-2024
$|Legend s Exchange
g Buid up | B 5 e Vegetation to | 4009.4 6251.4 9236.8
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Figure 5: Land cover transitions from 1995 to 2024

The findings of land cover exchanges in urban Zanzibar
between 1995 and 2024 reveal a clear pattern of extensive
vegetation loss due to urban expansion, with some minor
regeneration of built-up areas back to vegetation (Table 7;
Figure 6). Between 1995 and 2009, 4,009.4 ha of vegetation
were converted to built-up areas. This period marked
the beginning of significant urbanization when natural
vegetation was increasingly cleared for infrastructure
development and urban growth. However, 563.8 ha of
built-up land was reclaimed by vegetation, which could
be attributed to greening efforts, abandonment of urban

the land cover/use classes in the study area revealed
distinct patterns. These curves, along with their standard
deviations (SDs), show considerable spectral overlaps
between the three LULC classes (Built-up, Vegetation, and
Water) across the seven Landsat bands, especially within 1
SD. This observation is consistent with previous research
that highlights the challenges of spectral separability
between these land cover types, particularly when using
multispectral sensors (Vali e al, 2020). Gavade and
Rajpurohit (2020) found that the visible bands (bands 1
to 4: coastal aerosol, blue, green, and red) exhibited the
highest level of overlap. These findings align with studies
that show the visible spectrum generally struggles to
distinguish between vegetation and built-up areas due to
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Figure 6: Transition from vegetation to build-up areas

similar reflectance characteristics in these bands (Ma e#
al., 2020). The general reflectance trend showed that the
visible bands had the lowest values, followed by band 7
(Short-wave Infrared 2), band 6 (Short-wave Infrared 1),
and band 5 (Near Infrared) (Nalepa ez a/, 2019). This is
in agreement with other studies that have reported the
effectiveness of infrared bands, particularly bands 5 and
7, in enhancing classification accuracy for land cover
mapping (Gavade & Rajpurohit, 2020). Among these, the
near-infrared band (band 5) displayed the most noticeable
reflectance differences between water and non-water
classes. This is consistent with the findings of a study by
Vali e al. (2020), who demonstrated that the near-infrared
region is sensitive to water body characteristics, enabling
better discrimination between water and vegetation.
Outside the range of 1 SD, only the Near Infrared
(band 5) and Short-wave Infrared 1 (band 6) bands were
effective in distinguishing water from other land cover
types (Nelapa ez al, 2019). Similar results were reported
by Ma et al. (2020), who emphasized the significance of
these bands in water body identification, especially when
the spectral reflectance of water overlaps with that of
vegetation in the visible bands.

The spectral separability assessment of built-up areas,
water, and vegetation using Landsat OLI (2024), ETM+
(2009), and TM (1995) imagery, evaluated through
Transformed Divergence (ID) and Jeffries-Matusita (J-
M) distance metrics, demonstrated that newer sensors
(OLI and ETM+) provide superior separability due to
their enhanced spatial and spectral resolution, with TD
values surpassing the 1.9 threshold for all land cover
classes. This aligns with findings that newer sensors,

particularly OLI, improve classification accuracy for
challenging land covers like water and urban areas
(Harrak ez al, 2025). In contrast, Landsat TM showed
limitations in distinguishing water from built-up areas and
vegetation, likely due to spectral overlap and the absence
of a coastal aerosol band (Lewis e al, 2018; Ginen &
Atasever, 2024). These limitations are consistent with
previous studies highlighting the reduced capacity of
TM to separate LULC classes due to its coarser spectral
resolution and fewer bands (Shao e a/, 2023). Recent
studies also emphasize the improved classification
performance of OLI and ETM+ sensors for urban and
water bodies, which are critical for accurate land cover
classification and environmental monitoring (Zhang ef al.,
2025; Harrak ef al., 2025).

Pairwise band comparison

The pairwise correlation analysis of Landsat bands for
the urban Zanzibar scene revealed high correlations
among visible bands (1-4), with values ranging from
0.979 to 0.999, indicating they capture similar spectral
information. This is consistent with previous studies
showing visible bands’ effectiveness in distinguishing
built-up areas and vegetation (Cottrell ez 2/, 2024). Bands
5 (NIR), 6 (SWIR 1), and 7 (SWIR 2) showed moderate
correlations with visible bands, with Band 5 having
lower correlations (0.681 to 0.783). The high correlation
between Bands 6 and 7 (0.961) highlights their shared
sensitivity to moisture content, aiding in distinguishing
urban areas from vegetation and water (Gokool e al.,
2024). The strong correlation between Bands 5 and 6
(0.963) emphasizes the importance of NIR and SWIR
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bands for differentiating water bodies (Liu ez al., 2020),

reinforcing the need for careful spectral band selection in
urban environments like Zanzibar.

Image classification

The analysis of land cover change in utban Zanzibar
from 1995 to 2024 highlights significant urban expansion,
with built-up areas increasing by 120.9% from 1995
to 2009 and a further 94.6% from 2009 to 2024. This
rapid urbanization, largely driven by population growth
and infrastructure development, mirrors similar trends
observed in coastal cities wotldwide (Tsurusaki & Salem,
2024). For instance, studies in coastal cities like Lagos,
Nigeria, and Jakarta, Indonesia, also report significant
urban sprawl at the expense of natural ecosystems,
particularly mangrove forests, and wetlands, due to
high population growth and economic development
(Kukkonen et al., 2017; Seto et al., 2012). Zanzibat’s 26.3%
loss in vegetation cover from 1995 to 2024 is consistent
with the global pattern of urban encroachment into
green spaces. For example, a study on urbanization in the
Philippines found a comparable decline in forest cover as
urban areas expanded rapidly, threatening biodiversity and
ecosystem services (Tossoukpe 7 al., 2025). Additionally,
the reduction in vegetation in Zanzibar, likely driven by
land conversion for urban settlements and agriculture,
mirrors findings from other African coastal cities,
such as Mombasa, Kenya, where land-use changes for
urbanization have led to similar declines in coastal forest
and mangrove habitats (Haldar ez a/, 2024). On the other
hand, the minimal variation observed in Zanzibat’s water
bodies over the study period stands in contrast to trends
in cities like Dhaka, Bangladesh, where urbanization has
significantly altered hydrological patterns, often leading to
the reduction of freshwater bodies (Tessema & Abebe,
2023). This relative stability in Zanzibar could indicate
effective conservation efforts or natural limitations in the
expansion of urban development into water-rich areas,
but it also suggests that Zanzibar may still face risks from
future urbanization if water resource management is not
carefully integrated into development plans (Barman
et al., 2024). The findings from Zanzibar thus resonate
with broader global challenges faced by coastal cities,
reinforcing the need for sustainable urban planning that
prioritizes ecological conservation, integrated ecosystem
management, and climate resilience to mitigate the
adverse effects of rapid urban growth (Puplampu &
Boafo, 2021; Blakime ¢7 al., 2024).

Accuracy assessment

The accuracy assessment of land use and land cover
(LULC) classification for utban Zanzibar shows a
consistent improvement over the study period from
1995 to 2024, reflecting advancements in remote sensing
technology and classification methodologies (Sanchez-
Llull et al., 2025). The overall accuracy increased from
78.33% in 1995, with a Kappa coefficient of 0.76
indicating moderate agreement, to 87.22% in 2009,

with a Kappa coefficient of 0.84 indicating substantial
agreement. The
in 2009 is mainly attributed to the use of the Landsat
ETM+ sensor, which offered better spectral resolution
and data quality than the older Landsat TM sensor (Mota
et al., 2022). Additionally, improvements in classification
algorithms and the availability of higher-quality training
data contributed to this enhanced accuracy (Valero-Jorge
et al., 2024). Similar findings have been reported by other
studies demonstrating the positive impact of improved

significant improvement observed

sensor capabilities and methodological advancements on
LULC classification accuracy (Foody, 2020; Sanchez-Llull
et al., 2025). The classification accuracy reached its highest
level in 2024, achieving an overall accuracy of 93.33%
with a Kappa coefficient of 0.88, indicating near-perfect
agreement between the classified maps and reference
data. This high accuracy is largely due to the superior
spatial, spectral, and radiometric resolution of the
Landsat OLI sensor, complemented by the application
of advanced classification techniques such as machine
learning, which effectively handles complex landscapes
and mixed pixels (Foody, 2020; Koli¢ et al, 2025). The
progressive improvement in classification accuracy aligns
with previous studies demonstrating that enhanced
image quality and sophisticated algorithms significantly
improve LULC mapping accuracy (Nikolakopoulos &
Petropoulos, 2025). The high accuracy achieved in 2024
highlights the reliability of the classification results and
strengthens their potential use for analyzing urban change
and ecological impacts in Zanzibar.

Change detection analysis

The crosstabulation analysis of 1995 and 2024 land cover
maps for urban Zanzibar reveals substantial land cover
transitions, with the most prominent change being the
conversion of vegetation to built-up areas, amounting to
approximately 9,236.88 hectares. This finding indicates
extensive urbanization over the nearly three-decade study
period, driven by rapid population growth, infrastructure
development, and increased economic activities. Similar
studies worldwide have reported comparable trends,
particularly in developing countries experiencing rapid
urban expansion. For instance, a study by Seto e/ al.
(2012) highlights that urban areas in Asia and Africa are
expanding at unprecedented rates, resulting in significant
loss of vegetation cover and natural habitats. Likewise,
Cao e/ al. (2020) reported substantial conversion of
forested and vegetated areas to built-up land in Zhoushan
Island, East China due to urban growth, often at the
expense of ecological sustainability.

The persistence of built-up areas (1,994.7 ha) underscores
the consolidation and stability of urban growth in
Zanzibar, reflecting patterns also observed in rapidly
urbanizing cities globally. For example, studies conducted
in cities across Pacific urban villages have demonstrated
similar trends where urban areas continue to expand while
remaining relatively stable once established (Jones, 2016).
Additionally, the conversion of water to built-up areas
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(175.5 ha) highlights coastal development, including the
construction of houses, hotels, and other infrastructure,
a trend also noted in coastal cities wotldwide where
tourism-driven urbanization is prevalent (Tew ¢t al,
2018). However, the relatively low transition of built-up
areas back to vegetation (499.0 ha) indicates limited urban
greening efforts, a phenomenon consistent with findings
in cities across Africa and Asia where urbanization is
typically associated with irreversible land cover changes
(Zhou et al., 2018). Furthermore, the negligible transition
from water to vegetation (1.8 ha) likely reflects minor
natural processes, such as sediment deposition or
vegetation encroachment along water bodies. Collectively,
these findings align with broader global patterns of urban
expansion and landscape change, underscoring the need
for sustainable urban planning to balance development
with environmental conservation (Petrisor, e# al., 2020).

CONCLUSION
The findings of this
extensive urban expansion in Zanzibar from 1995 to

study reveal a rapid and

2024, predominantly driven by population growth,
infrastructure development, and economic activities.
This urbanization has resulted in a significant decline in
vegetation cover, with approximately 26.3% of vegetation
lost over the study period. Despite the relative stability of
water bodies, the conversion of vegetated areas to built-
up land highlights the adverse impacts of urban growth
on ecological sustainability. The application of advanced
remote sensing techniques, including change detection
analysis using Landsat imagery, has proven effective in
providing a comprehensive understanding of Zanzibar’s
urbanization patterns. The results emphasize the urgent
need for sustainable urban planning and conservation
the
consequences of urban sprawl. Future studies should

strategies to mitigate negative environmental
focus on integrating high-resolution satellite data and
socio-economic factors to enhance the monitoring and

management of urban growth in Zanzibar.
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