
Pa
ge

1

Pa
ge

99

American Journal of
Education and Technologies (AJET)

Comparing Flowchart and Swim Lane Activity Diagram for Aiding Transitioning to
Object-Oriented Implementation

A.Z. Umar1*, M.M. Gumel2, H.S. Tuge1

Volume 1 Issue 2, Year 2022
ISSN: 2832-9481 (Online)

DOI: https://doi.org/10.54536/ajet.v1i2.612
https://journals.e-palli.com/home/index.php/ajet

Article Information ABSTRACT

Received: September 17, 2022

Accepted: September 28, 2022

Published: September 30, 2022

Object Oriented Programming (OOP) paradigm is one of the programming styles that
emerged in response to the challenge of designing complex software. However, students
find it hard to conceptualize objects when they were already accustomed to non Object Ori-
ented approach to programming. This paper hypothesizes that introducing Object Oriented
(OO) notations to students during the design phase will smoothen their transition to Object
Oriented Programming. To test the hypothesis, an experiment was conducted with the stu-
dents of Al-Qalam University Katsina, Nigeria. The participating students were divided into
two groups: (i) Flowchart group - representing the classical approach where flowcharts were
used to design solutions. (ii) Activity Diagram group - which represents the control group in
which swim lane activity diagram, as Object Oriented notation, was introduced to them at
the design phase. Both groups were later introduced to Class Responsibility Collaborators
(CRC) cards as an Object Oriented implementation model. The students were tested, four
different times, on how well they converted flowcharts or activity diagrams, as the case may
be, into Class Responsibility Collaborators cards, and their performances were recorded.
The results were analyzed using Repeated Measure Analysis of Variance (ANOVA). Unex-
pectedly, the Flowchart group outperformed the Activity Diagram group but the results were
not statistically significant. Similarly, there was no statistical difference between males’ and
females’ performances.

Keywords
Flowchart, Programming
Pedagogy, Swim Lane Activity
Diagram, Teaching OOP

1 Department of Software Engineering and Cyber Security, Al-Qalam University Katsina, Nigeria
2 Department of Computer Science and Information Technology, Al-Qalam University Katsina, Nigeria
* Corresponding author’s e-mail: azumar@auk.edu.ng

INTRODUCTION
Computer programming is an important skill across
diverse fields and disciplines and even more so for
Computing Science students. As computers are
becoming more pervasive, the skill is one of the necessary
requirements for continuous automation of the modern
world as well as for the maintenance of the already
automated systems. For computing based disciplines
such as Computer Science and Software Engineering,
programming courses are taught at many levels - from
the year of entry to the year of graduation. Despite the
criticality of programming, acquiring the skills remains a
challenge for many students(Mehmood et al., 2020).
Although there are many reasons why students struggle
with programming(Oroma et al., 2012; Qian et al., 2017;
Sheard et al., 2009) the following are the most relevant to
this paper:

i. The cognitive intensity that is required to learn the
low-level details of programming.

ii. Pedagogically, students have been literary dragged to
it (the programming).
For the low level details inhibiting the comprehension
of programming as outlined in (i) above, over the years
programming languages have evolved in which the level of
abstraction has been raised. In the process of abstraction
evolution, many programming styles/paradigms emerged.
One of the emerged paradigms is the Object Oriented
Programming (OOP) paradigm developed out of the
desire to manage complexity and improve productivity
in software development. It is a programming style that
uses real world “objects” to design computer programs.
OOP reduces the conceptual gap from the design space to

the implementation space(Bucci et al., 2002; Evans, 2004)
because the program is conceptualized as a collection of
objects interacting to achieve a common goal(Hourani
et al., 2019). Similarly, programs developed using OOP
are easier to maintain because objects are easier to trace
and update (G. Antoniol et al., 2001; Giulio Antoniol et
al., 2000; Bianchi et al., 2000). Further, OOP provides
additional support for code reuse through inheritance and
additional support for flexibility through polymorphism
(Daly et al., 1996).
With OOP, professional software developers enjoy
plethora of supports. For example, in testing, there
exist unit testing frameworks (Daka & Fraser, 2014); in
mapping objects to records in a relational database, there
exist Object Relational Mapping frameworks (Torres et
al., 2017); in design, there exists a collection of design
patterns to solve similar recurring problems (Gamma
et al., 1995); in source code organization, there exists
guidelines and tool support for refactoring (Daughtry III
& Kannampallil, 2005; Martin, 2018).
As the saying goes that a picture may be worth
more than a thousand words, it was envisaged that
diagraming will improve comprehension of computer
programming (Smetsers-Weeda & Smetsers, 2017) as
pictorial representation simultaneously raises the level of
abstraction from low to high and can be used to improve
over teaching pedagogy. Consequently, diagrams were
also introduced to represent the design of a solution that
will be implemented as a computer program. One of the
diagrams used for the design is Flowchart. Similarly, one
of the diagrams used for OO design is Activity Diagram
and some of the notations used in documenting OO

https://doi.org/10.54536/ajet.v1i2.612

mailto:https://journals.e-palli.com/home/index.php/ajet%0D?subject=
mailto:azumar@auk.edu.ng

Pa
ge

10

0

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

implementation are Class Responsibility Collaborators
(CRC) models. We provide the details of the flowchart,
the activity diagram, and the CRC in the Methodology section.

Statement of the problem
In the introductory computing courses, students are
expected to learn how to design solutions to computing
problems using notations such as flowcharts and then
subsequently learn how to translate the flowchart into
an algorithm to be implemented using the procedural
style of programming. Later, and in subsequent courses,
students are introduced to the OOP programming
style as another implementation alternative. However,
since students were already accustomed to procedural
implementation and knew that the approach ‘works,’ they
struggled to conceive objects when introduced later as a
viable alternative(Börstler et al., 2008; Cutts et al., 2019;
Kölling, 1999). Students already learned how to design
solutions to problems without the concept of objects in
the scheme of things and were later required to transition
to Object Oriented implementation. One of the reasons
for the struggle might be that they do not have a clue
about objects in the design space but have been asked to
reflect them in the implementation space, which requires
unlearning the procedural style of implementation.
Thus, this paper aims to compare the effect of learning
flowcharts, as non OO design notation, and activity
diagram (an OO based design notation) in transitioning
to Object Oriented implementation.

Research hypotheses
Given the above, we envisage that the students may find
the transition easier if OO-notations were also introduced
to them while learning diagrammatic designs of solutions
to computing problems (see Figure 1). As such, the paper
hypothesized the following:

• H1: Introducing activity diagrams to students at
the design stage will improve their ease of transition to
Object Oriented implementation.

• H2: there is a difference between males and females
in transitioning to Object Oriented design (OOD).
The rest of the paper is organized as follows: Section 2.0
presents the research works related to this paper. Section
3.0 explains the methodology adopted in this paper and
begins with the clarification of the research constructs
and ends with the detailed settings and execution of the
study. Section 4.0 discusses the results obtained and
highlights what could be threats to the validity of the
research. Lastly, Section 5.0 concludes the paper.

LITERATURE REVIEW
Existing studies mostly focus on the performance of
students in programming, generally, and not specifically
on OOP. For instance, Olalekan et al., (Akinola &
Nosiru, 2014) investigated the effect of students’
attitudes on ease of learning programming. They used
students’ attitudes such as regular attendance to lectures
and interest in programming as some of the research

constructs. They found that regular attendance at lectures
was the most important factor, followed by the students’
interest in programming. Other factors that were found
to affect students’ performance in learning programming
were positive perception about the programming and
the lecturers’ attitudes toward the students. Similarly,
Amnouychokanant et al., (Amnouychokanant et al.,
2021) assessed the effect of students’ attitudes toward
programming and its learning performance but with
different sets of research constructs. Some of the research
constructs used and found to be significant predictors of
high-performance in programming were positive self-
efficacy and creativity.
There has been a continuous search for effective techniques
to teach OOP. For instance, Loksa et al., (Loksa et al.,
2016) proposed an approach aimed at teaching student
problem solving skills. The approach put emphasis in
creating an explicit mental model of the problem to be
solved and depicting the coding as a mere translation of
the mental model. Other techniques introduced include
visualizing the progress in creating the solution as well
as explicit support for promptings to reflect on their
strategies to solve the problem. Similarly, (Bucci et al.,
2002) reported how they worked in transitioning from
the traditional imperative model to an Object Oriented
model of learning programming for over ten years and
concluded that teaching Object Oriented programming
is not as simple or “natural” but difficult to convey to the
students the advantages and methodologies associated
with Object Oriented programming.
Still on the search for effective pedagogies to teach
OOP,(Anfurrutia et al., 2017)Implemented Kolb’s learning
theory in visual programming environments in order to
help students to become competent in Object Oriented
programming. The authors analyzed the acceptance
by the students as well as its effect on their motivation.
Kolb’s learning theory entails four cycles that learners
must undergo to acquire knowledge. The cycles are: (i)
carrying out a specific activity to have concrete experience
(ii) reflecting on the experience from the carried out
activity, (iii) conceptualizing the theoretical aspects of the
activity, and (iv) applying the knowledge acquired in new
scenarios or situations. The visual environments used
were BlueJ and Greenfoot – another IDE for learning
and teaching based on simulations or games. For the
acceptance, students indicated that they would prefer
using the tools even though females’ responses were
more negative than males’. As for motivation, the results
were not as good as the authors’ expected. However, the
approach does not consider the problem analysis space.
In another study on the pedagogical approach to teaching
OOP, (Uysal, 2012) explored the effects of ‘objects-first’
and ‘objects-late’ methods of teaching Object Oriented
Programming (OOP). The author experimented with
two groups of students. The scope of the course was
identical for the two groups but the structure of the
contents differed in sequence. Both the participants in
the two groups used BlueJ IDE to eliminate the possible

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

1

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

effects of different instructional tools. The objects first
learners used all visual functionalities of BlueJ IDE while
the objects late learners started with only the text-based
interfaces of BlueJ and were instructed to use the visual
support only in the last lectures. The study found that the
learners instructed with the objects-first method achieved
higher learning outcomes.
In a similar context of smooth transitioning from process
engineering to process control engineering, (Vogel-
Heuser et al., 2003) explored the benefit of modeling.
From the experiment they had conducted with students,
it turned out that the groups that previously modeled the
process had advantages in describing the several process
steps and structuring the Programmable Logic Controller
(PLC) program.
In another exploratory study, (Ivanović et al., 2015)
investigated different aspects of teaching introductory
courses on Object Oriented Programming at three
(3) universities in different European countries. They

compared different aspects and experiences from Object
Oriented programming courses that were taught in the
three (3) institutions. They found that all the institutions
use various forms of course delivery. This indicates that
a generic strategy for teaching transition to OOP has
not been found yet. However, in all three (3) institutions,
technology-enhanced learning tools (TEL) played a
central role in the OOP courses offered. In particular,
BlueJ - an integrated development environment (IDE)
for learning OOP with Java language designed for
educational purposes- was found to be used in all three
institutions.

METHODOLOGY
Figure 1 represents the conceptual model of this paper.
In the Figure, flowcharting represents the art of non
Object Oriented problem solving using flowcharts
while Activity diagraming represents the art of Object
Oriented problem solving using activity diagrams. Ease

Figure 1: Conceptual model

of transition to Object Oriented programming is assessed
based on how well the class responsibility collaborators
(CRC) model is produced. We expect gender to play a
moderating role.
To make the discussion in this section more concrete,
we introduce a trivial problem of manual booking of
an appointment with a dentist. In the manual process, a
patient calls the dental clinic. The receptionist receives
the call and guides the patients on the available slots.
The patient selects one of the available slots, which
the receptionist will reserve and informs the patient of
the appointed schedule. For brevity, we assume that
the patient has already registered with the clinic. In this
section, we will discuss the background concepts with
the solutions to the stated problem using a flowchart, an
activity diagram, and class responsibility collaborators
(CRC) cards.

Flowchart
A flowchart is a diagrammatic representation of steps to
solving a given problem. Although it can also be used
for other things such as the analysis of the problem
or documentation of a process, we use a flowchart in

this paper in the context of representing a solution to
a computing problem. A flowchart is an approximate
representation of an algorithm to solve a specific
computing problem.
A flowchart can be used to teach problem solving without
getting deep into the low-level details of complete
syntaxes of a programming language so that learning can
be focused on the problem solving aspect. Flowchart-
based programming environments are also used to entice
students to programming with the big picture of the
intended solution in their minds(Chen & Morris, 2005;
Smetsers-Weeda & Smetsers, 2017).
The flowchart in Figure 2 represents the design of an
automated system to solve the problem of manually
booking of an appointment with a dentist as outlined
above. As shown in the figure, after starting the system, it
displays the list of available slots for patients to request an
appointment with a dentist. The patient would then select
a slot and request its booking. The system then checks
to confirm if the slot has not been reserved for other
patients since, due to time lag, another patient might have
requested and booked the selected slot. If the slot has
already been taken, the system returns the patient to the

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

2

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

list of available slots otherwise the system will reserve the
slot and send a notification email to the patient. Lastly,
the booking information shall be displayed to the patient.

Activity Diagram
The activity diagram is one of the behavioural
diagrams of Unified Modelling Language (UML).

Figure 2: Flowchart illustration of a dentist booking system

It is similar to the flowchart as it can be used to
diagrammatically represent a series of actions or flow of
control to solve a given problem. Similarly, it can be used
for other things such as modelling business processes or
behavioural descriptions of a use case diagram(Jeyaraj &
Sauter, 2014; Khaled AbdElazim et al., 2020).
Swim lane activity is an activity diagram that is used to
show which system actor is responsible for what, in
addition to the representation of the series of actions or
flow of control to solve the problem. Thus, the presence
of objects as well as their high level responsibilities can
be captured explicitly as system actors on the diagram.
Swim lane activity diagrams are also powerful models

in model-driven engineering (MDA) in the sense that
they could also be transformed into other models or
executable (Zhang et al., 2012). The diagram may as well
be recovered from Object Oriented source codes through
reverse engineering(Martinez et al., 2011).
Figure 3 is an activity diagram that represents the same
solution depicted in Figure 2 as Flowchart. It is a swim
lane activity diagram because the responsibilities are
indicated under the System and Patient as the main actors.

Class Responsibility Collaboration (CRC)
Class Responsibilities Collaborators (CRC) was invented
by Ward Cuningham and Kent Beck(Beck & Cunningham,

Figure 3: Swim lane activity diagram representing the design of a dentist booking system

1989; Cunningham & Beck, 1986) as an approach to
discovering and documenting objects in OO design. CRC
was initially designed to simplify learning OOP but has
also been used in professional software development
such as Agile’s eXtreme Programming (XP)(Beck, 1999).

A class represents a template from which similar objects
are created, responsibility is something that a class knows
or does, and a collaborator is another class that a class
interacts with to fulfill its responsibilities. CRC card is
a 3x5 index card and is partitioned into three: the first

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

3

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

and the topmost portion is a row in which the name of
the class being considered is represented; the second and
the leftmost portion, represent the responsibilities of that
class; the third portion represents the collaborators that
the class will need to complete its responsibilities. Figure
4 presents the major CRC cards derivable from the swim
lane activity diagram of Figure 3.

Thus, as shown in Figure 4, five initial classes were
identified as Patient, DentalBookingManager, Slot,
BookedSlot, and Dentist.
CRC can be regarded as an implementation model as
the major activity for OO implementation is identifying
classes, their responsibilities, and collaborators without
resorting to implementation details. We could have used

Figure 4: CRC cards for objects implementing the dentist booking system in OOP

a class model instead but a study had found that students
are more keen with CRC than the class diagram (Gray
et al., 2003). Further, a correctly designed CRC can be
implemented as an OOP program with relative ease.

Study Setting
An experiment was conducted with year one students
of Al-Qalam University Katsina, Nigeria drew using a
sample of convenience as only volunteers were recruited.
The population of the study was Computer Science
and Software Engineering students enrolled in the
Introduction to Problem Solving course (module). The
study recruited two groups of students: the Flowchart
group consists of seventeen (17) students enrolled to
study B.Sc. The Computer Science and Activity Diagram
group comprises seventeen (17) students enrolled to
study B.Sc. Software Engineering. All the students had
taken Introduction to Computer Science in the previous
semester. The distinct groups of the students were
briefed about the motive of the experiment.
The students in the Flowchart group were taught flowcharts
for a week and then preceded to learn Class Responsibility
Collaboration (CRC) for another week. Students were
then taught how to translate flowcharts to CRC cards for
two weeks. Hence, the first group transitioned to Object
Oriented implementation from procedural notations.
The students in the Activity Diagram group were taught
the swim-lane activity diagram for a week and then
preceded to learn class responsibility collaboration (CRC)
for another week. Students were then taught how to
translate the swim lane activity diagram to CRC cards for
two weeks. Therefore, the second group transitioned to
Object Oriented implementation from Object Oriented
design. A final-year undergraduate student taught both

groups as part of her final year project.
The students were tested four (4) times within one week,
each with a new problem. The reason for repeating the
tests was to reduce the random noise and uncover the
actual performance. In all the tests, the performances
of the students were measured in terms of how well
they translated the flowchart or activity diagram, as the
case may be, to class responsibility collaborators (CRC)
cards. That is, students in the different groups were
asked the same question but with different notations to
transitioning to CRC.
The experiment was treated as a 2 X 4 factorial design.
Group was a between-subject factor with two levels
(Flowchart vs Activity Diagram). The within-subject
factor was the test which has four levels (test1, test2,
test3, and test4). Data collected from the experiment
were students’ age, gender, and the scores of the tests.

RESULTS
In the two groups, there were a total of twenty-one
(21) male students and thirteen (13) female students.
However, five (5) female and three (3) male performance
records were removed before the analysis because they
were absent in some of the tests. Therefore, assessments
of only twenty-four (24) students were analysed. Since
the study was repeated four (4) times, we still had 96 data
points that were subjected to the analysis.
The scores for the individual students ranged from 50 to
100 with the overall (grand) average score as 82.01. The
means scores of the four different tests range from 78.85
to 84.39 but the difference was not statistically significant
F(1, 3)=1.424, P=0.242. However, the means scores
for all the four tests were significantly higher than the
expected mean score of 50 to 55 obtained from historical

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

4

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

be conducted with large and (semi)randomised samples.

Threat to Validity
It may be argued that the activity diagram may not be
the right notation to test the ease of transitioning from
procedural style as previous studies mostly used Integrated
Development Environments (IDEs) (Anfurrutia et
al., 2017; Ivanović et al., 2015; Uysal, 2012). However,
using IDEs assumed that students already know how
to design solutions before their implementation using a
specific programming environment. Our study focused
on problem-solving without the cumbersome aspect
of learning syntaxes of any programming language.
In addition, modeling using, diagrammatic notation,
helps in bringing out the big picture of the intended
solution(Vogel-Heuser et al., 2003).
There was a chance of sampling error as the students’
average scores were significantly high. Nevertheless, since
the individual scores ranged from 50 to 100 and there
was a total of 96 data points, any variations between the
groups that were not down to chance should have been
detected. However, further study with large and (semi)
randomised samples may give better insight. Similarly,
the results may not be generalizable as the participated
students were mainly novices. Nonetheless, different
backgrounds do not necessarily matter(VVilner et al.,
2007).

CONCLUSION
When learners were already accustomed to the procedural
implementation style, they may struggle to conceive objects
in object oriented programming despite the advantage
of the Object Oriented style over the procedural style.
This paper conceived that introducing Object Oriented
modeling at the solution design phase may help ease the
transition to Object Oriented programming. Thus, the
paper experimented to test the effect of object oriented
modeling in easing the transition to Object Oriented
style. The results show that introducing the Object
Oriented modeling will not achieve that desired effect as
expected. The paper suggests further studies with large
and randomise sample.

REFERENCES
Akinola, O. S., & Nosiru, K. A. (2014). Factors Influencing

Students’ Performance in Computer Programming: A
fuzzy Set Operations Approach. International Journal of
Advances in Engineering & Technology, 7(4), 1141–1149.
http://www.e-ijaet.org/media/3I22-IJAET0721391_
v7_iss4_1141-1149.pdf

Amnouychokanant, V., Boonlue, S., Chuathong, S.,
& Thamwipat, K. (2021). A Study of First-Year
Students’ Attitudes toward Programming in the
Innovation in Educational Technology Course.
Education Research International, 2021. https://doi.
org/10.1155/2021/9105342

Anfurrutia, F. I., Alvarez, A., Larranaga, M., & Lopez-
Gil, J. M. (2017). Visual Programming Environments

scores of computing courses (t1(25)=14.61, p=0.000;
t2(25)=15.22, p=0.000; t3(25)=17.87, p=0.000; t4(25)
=13.86, p=0.000).
In the first, second, and fourth tests, the means for the
males were 85.61, 80.83, and 83.06 respectively. The means
for females were 81.63, 74.38, and 80.63 respectively.
Thus, the means for the male were higher. In contrast, in
the third test, the means for females were slightly higher
which was 83.13 against males’ 82.22. However, there
was no significant interaction between gender and the
performance F(1,3) = 0.531, p=0.663.
In the first, second, and third tests, the mean for the
Flowchart group were 86.0, 84.55, and 85.46 respectively,
while for the Activity Diagram group the means were 83.2,
74.67, and 80.33 respectively. Thus, the means for the
Flowchart group were higher than the expected outcome.
In the fourth test, the means were comparably very close:
for the Flowchart Group 82.27 while for the Activity Diagram
group 82.33.
In addition to the quantitative results analyzed above,
the second author also profiled students’ mistakes. In the
Flowchart group, students found it difficult to distinguish
between input/output and process symbol as both were
used interchangeably. They were also not bothered to put
the stop symbols at the end of the flowchart. Lastly, they
use directional arrows inappropriately. For the Activity
Diagram group, Students struggle with specifying the
different actors in the different columns of the diagram.
They mistook the end node and the end node. Lastly, they
often place a process in a column it does not belong to.
Nonetheless, the students in both groups were making
similar mistakes in the CRC such as skipping some of
the responsibilities, interchanging the position of the
responsibilities and collaborators, and not writing the
class name.

DISCUSSION
It might be observed that the average score of the
participants students was remarkably high considering
the rate of failure in computer programming and problem
solving related ourse(Omeh & Olelewe, 2021); It might be
the case that only high-performing students volunteered
to participate in the study. Similar to the studies in
(Amnouychokanant et al., 2021; Omeh & Olelewe,
2021), no significant interaction between gender and the
performance. Thus, we reject the hypothesis that there is
a difference between males and females in transitioning to
Object Oriented design (OOD). The findings contrast
with the results obtained in(Anfurrutia et al., 2017) where
males’ and females’ preferences differed significantly.
Similar to the results obtained in (VVilner et al., 2007),
there was no significant interaction between the different
groups and the performance (F(1, 3) = 1.160, p=0.331).
Consequently, we reject the hypothesis that introducing
activity diagrams to students at the design stage will
improve their ease of transition to Object Oriented
implementation. It likely that the sample used in the
study was not large enough. Thus, further study should

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

5

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

for Object-Oriented Programming: Acceptance
and Effects on Student Motivation. IEEE Revista
Iberoamericana de Tecnologias Del Aprendizaje, 12(3), 124–
131. https://doi.org/10.1109/RITA.2017.2735478

Antoniol, G., Canfora, G., Casazza, G., & De Lucia, A.
(2001). Maintaining traceability links during object-
oriented software evolution. Software: Practice and
Experience, 31(4), 331–355. https://doi.org/10.1002/
SPE.374

Antoniol, Giulio, Caprile, B., Potrich, A., & Tonella, P.
(2000). Design-code traceability for object-oriented
systems. Annals of Software Engineering 2000 9:1, 9(1),
35–58. https://doi.org/10.1023/A:1018916522804

Beck, K. (1999). Extreme Programming Explained: Embrace
Change, addison-wesley professional.

Beck, K., & Cunningham, W. (1989). A laboratory
For Teaching Object-Oriented Thinking. ACM
SIGPLAN Notices, 24(10), 1–6. https://doi.
org/10.1145/74878.74879

Bianchi, A., Fasolino, A. R., & Visaggio, G. (2000).
An exploratory case study of the maintenance
effectiveness of traceability models. Proceedings - IEEE
Workshop on Program Comprehension, 2000-January, 149–
158. https://doi.org/10.1109/WPC.2000.852489

Börstler, J., Nordström, M., Kallin Westin, L., Moström,
J. E., & Eliasson, J. (2008). Transitioning to OOP/
Java — A Never Ending Story. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
4821 LNCS, 80–97. https://doi.org/10.1007/978-3-
540-77934-6_8

Bucci, P., Heym, W., Long, T. J., & Weide, B. W. (2002).
Algorithms and object-oriented programming:
Bridging the gap. SIGCSE Bulletin (Association
for Computing Machinery, Special Interest Group on
Computer Science Education), 302–306. https://doi.
org/10.1145/563517.563459

Chen, S., & Morris, S. (2005). Iconic programming
for flowcharts, java, turing, etc. ACM
SIGCSE Bulletin, 37(3), 104–107. https://doi.
org/10.1145/1151954.1067477

Cunningham, W., & Beck, K. (1986). A diagram for object-
oriented programs. ACM SIGPLAN Notices, 21(11),
361–367. https://doi.org/10.1145/960112.28734

Cutts, Q., Barr, M., Bikanga Ada, M., Donaldson, P.,
Draper, S., Parkinson, J., Singer, J., & Sundin, L.
(2019). Experience report: Thinkathon - Countering
an “I got it working” mentality with pencil-and-paper
exercises. Annual Conference on Innovation and Technology
in Computer Science Education, ITiCSE, 203–209.
https://doi.org/10.1145/3304221.3319785

Daka, E., & Fraser, G. (2014). A survey on unit testing
practices and problems. Proceedings-International
Symposium on Software Reliability Engineering, ISSRE,
201–211. https://doi.org/10.1109/ISSRE.2014.11

Daly, J., Brooks, A., Miller, J., Roper, M., & Wood, M.
(1996). An empirical study evaluating depth of
inheritance on the maintainability of object-oriented

software. In: Empirical Studies of Programmers:
Sixth Workshop. Core.Ac.Uk. https://core.ac.uk/
download/pdf/9015758.pdf

Daughtry III, J. M., & Kannampallil, T. G. (2005).
Refactoring to Patterns. In The Journal of Object
Technology, 4,(4). https://doi.org/10.5381/jot.2005.4.4.r2

Evans, E. (2004). Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional.

Gamma, E., Helm, R., Johnson, R., Johnson, R. E.,
& Vlissides, J. (1995). Design patterns: elements
of reusable object-oriented software. In Pearson
Deutschland GmbH.

Gray, K. A., Guzdial, M., & Rugaber, S. (2003).
Extending CRC cards into a complete design process.
ACM SIGCSE Bulletin, 35(3), 226. https://doi.
org/10.1145/961576.961582

Hourani, H., Wasmi, H., & Alrawashdeh, T. (2019). A code
complexity model of object oriented programming
(OOP). 2019 IEEE Jordan International Joint Conference
on Electrical Engineering and Information Technology, JEEIT
2019 - Proceedings, 560–564. https://doi.org/10.1109/
JEEIT.2019.8717448

Ivanović, M., Xinogalos, S., Pitner, T., & Savić, M.
(2015). Different aspects of delivering programming
courses-Multinational experiences. ACM International
Conference Proceeding Series, 02-04-September-2015.
https://doi.org/10.1145/2801081.2801085

Jeyaraj, A., & Sauter, V. L. (2014). Validation of Business
Process Models Using Swimlane Diagrams. Journal of
Information Technology Management, 25(4), 27–37.

Khaled AbdElazim, D., Moawad, R., Elfakharany, E.,
Widasuria Abu Bakar, N., Musa, S., & Hadi Mohamad,
A. (2020). A Mini Comparative Study of Requirements
Modelling Diagrams towards Swimlane: Evidence
of Enterprise Resource Planning System. Journal of
Physics: Conference Series, 1529(5), 052054. https://doi.
org/10.1088/1742-6596/1529/5/052054

Kölling, M. (1999). The problem of teaching object-
oriented programming. Engineering, 11(9), 6–12.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C.
J., & Burnett, M. M. (2016). Programming, problem
solving, and self-awareness: Effects of explicit
guidance. Dl.Acm.Org, 1449–1461. https://doi.
org/10.1145/2858036.2858252

Martin, F. (2018). Refactoring: improving the design of
existing code. In Addison-Wesley Professional.

Martinez, L., Pereira, C., & Favre, L. (2011). Recovering
Activity Diagrams from Object Oriented Code : an
MDA-based Approach. Proc. Intl. Conf. on Software
Engineering Research and Practice.

Mehmood, E., Abid, A., Farooq, M. S., & Nawaz, N.
A. (2020). Curriculum, Teaching and Learning,
and Assessments for Introductory Programming
Course. IEEE Access, 8, 125961–125981. https://doi.
org/10.1109/ACCESS.2020.3008321

Omeh, C. B., & Olelewe, C. J. (2021). Assessing the
Effectiveness of Innovative Pedagogy and Lecture
Method on Students Academic Achievement

https://journals.e-palli.com/home/index.php/ajet

Pa
ge

10

6

https://journals.e-palli.com/home/index.php/ajet

Am. J. Educ. Technol. 1(2) 99-106, 2022

and Retention in Computer Programming.
Education Research International, 2021. https://doi.
org/10.1155/2021/5611033

Oroma, J. O., Wanga, H. P., Ngumbuke, F., & Wanga,
H. (2012). Challenges of teaching and learning computer
programming in developing countries: lessons from Tumaini
University. https://doi.org/10.13140/2.1.3836.6407

Qian, Y., Lehman, J., Qian, Y., & Lehman, J. (2017).
Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM
Transactions on Computing Education, 18(1). https://doi.
org/10.1145/3077618

Rentsch, T. (1982). Object oriented programming.
ACM SIGPLAN Notices, 17(9), 51–57. https://doi.
org/10.1145/947955.947961

Sheard, J., Simon, Hamilton, M., & Lönnberg, J. (2009).
Analysis of research into the teaching and learning of
programming. ICER’09 - Proceedings of the 2009 ACM
Workshop on International Computing Education Research,
93–104. https://doi.org/10.1145/1584322.1584334

Smetsers-Weeda, R., & Smetsers, S. (2017). Problem
solving and algorithmic development with flowcharts.
ACM International Conference Proceeding Series, 25–34.
https://doi.org/10.1145/3137065.3137080

Torres, A., Galante, R., Pimenta, M. S., & Martins, A. J. B.
(2017). Twenty years of object-relational mapping: A
survey on patterns, solutions, and their implications
on application design. Information and Software
Technology, 82, 1–18. https://doi.org/10.1016/J.
INFSOF.2016.09.009

Uysal, M. P. (2012). The effects of objects-first and
objects-late methods on achievements of OOP
learners. Journal of Software Engineering and Applications,
5(10), 816. https://www.scirp.org/html/23962.
html?pagespeed=noscript

Vogel-Heuser, B., Friedrich, D., & Bristol, E. H. (2003).
Evaluation of Modeling Notations for Basic Software
Engineering in Process Control. IECON Proceedings
(Industrial Electronics Conference), 3, 2209–2214. https://
doi.org/10.1109/IECON.2003.1280586

VVilner, T., Zur, E., & Gal-Ezer, J. (2007). Fundamental
concepts of CS1: procedural vs. object oriented
paradigm-a case study. ACM SIGCSE Bulletin, 39(3),
171–175.

Zhang, W., Wang, Z., Zhao, W., Yang, Y., & Xin, X. (2012).
Generating Executable Capability Models for Requirements
Validation. https://doi.org/10.4304/jsw.7.9.2046-2052

https://journals.e-palli.com/home/index.php/ajet

