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This study aimed to demonstrate the effectiveness of  time series models in modeling long-
term records of  global average absolute sea level changes from 1880 to 2014. Following the 
Box–Jenkins methodology, the ARIMA(0,1,2) model with drift was identified as the best-fit 
model for the time series due to its lowest AIC value. Using the LM algorithm, the results 
revealed that the NARNN model with 7 neurons in the hidden layer and 7 time delays 
exhibited the best performance among the nonlinear autoregressive neural network models, 
as indicated by its lower MSE. While ARIMA models excel in modeling linear problems 
within time series data, NARNN models are better suited for nonlinear patterns. However, 
a HYBRID model was explored, which combines the strengths of  both ARIMA and 
NARNN models, offering the capability to address both linear and nonlinear aspects of  time 
series data. The comparative analysis of  this study demonstrated that the HYBRID model, 
with 6 neurons in the hidden layer and 7 time delays, outperformed the NARNN model 
with 7 neurons in the hidden layer and 7 time delays, as well as the ARIMA(0,1,2) model, 
with the lowest MSE in this study. These findings represent a significant step in time series 
forecasting by leveraging the strengths of  both statistical and machine learning methods.
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INTRODUCTION
Climate change is the long-term alteration in the Earth’s 
average weather patterns. Sea level rise primarily results 
from two factors associated with climate change: the 
influx of  water from the melting of  land ice, including 
ice sheets and glaciers, into the world’s oceans, and the 
expansion of  seawater due to rising temperatures. The 
potential consequences of  sea level rise encompass 
various challenges, including but not limited to: 1) 
Increased coastal flooding and erosion, 2) Damage 
to agricultural land and crops, 3) Impacts on coastal 
and urban settlements and infrastructure, 4) Harm to 
coastal flora and fauna ecosystems, 5) Escalation of  
environmental sanitation issues, and 6) Exacerbation 
of  public health concerns. These effects underscore the 
urgency of  addressing climate change and its associated 
sea level rise to mitigate their detrimental impacts.
In 2014, the Intergovernmental Panel on Climate Change 
(IPCC) estimated that global sea levels had risen by a 
range of  26 to 55 cm (approximately 10 to 22 inches) 
with a 67% confidence interval. According to the Fourth 
National Climate Assessment Report by the U.S. Global 
Change Research Program (USGCRP) in 2017, sea levels 
had risen approximately 7 to 8 inches (around 16 to 21 
cm) since 1900, with about 3 inches (approximately 7 
cm) of  that increase occurring since 1993. The National 
Oceanic and Atmospheric Administration (NOAA), in its 
2019 Global Climate Annual Report (https://www.ncdc.
noaa.gov/sotc/global/201913), stated that global annual 
temperatures have been on the rise. They have increased 
at an average rate of  approximately 0.07°C (0.13°F) per 
decade since 1880.

Numerous studies (Church et al., 2008; Cazenave & 
Llovel, 2010; Cazenave & Cozannet, 2013; Horton et 
al., 2018; Kulp & Strauss, 2019; Haasnoot, 2020) have 
consistently pointed out that sea levels are rising at an 
accelerating pace. This underscores the significance 
of  comprehending historical sea level variations for 
analyzing present-day changes and anticipating future 
trends. In recent years, significant advancements have 
been in modeling sea level changes and understanding 
their underlying causes. These improvements are largely 
attributed to the availability of  new in situ and remote 
sensing observations (Foster & Brown, 2014; Visser et 
al., 2015; Bolin, 2015; Srivastava et al., 2016). Despite the 
critical importance of  sea level rise and its far-reaching 
consequences, it’s noteworthy that there remains a paucity 
of  studies in the technical literature dedicated to global 
sea level change prediction schemes.
Time series forecasting is a crucial data science technique 
applied across various disciplines. It involves using a 
model to predict future values based on past observations 
and has a solid theoretical foundation in statistics. In 
time series analysis, several widely-used models include: 
1) AR (Autoregressive): This model considers the 
relationship between a current value and its past values, 
2) MA (Moving Average): It focuses on the relationship 
between a current value and a stochastic white noise 
term, 3) ARMA (Autoregressive Moving Average): A 
combination of  the AR and MA models, it incorporates 
both autoregressive and moving average components, 
and 4) ARIMA (Autoregressive Integrated Moving 
Average): This model combines differencing (to make the 
series stationary) with the ARMA model. These models 
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are typically employed when dealing with time series data 
that exhibits constant variance. In contrast, the ARCH 
(Autoregressive Conditionally Heteroscedastic) model 
is designed for time series with changing variance over 
time. On the other hand, the GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) model 
extends ARCH by including both autoregressive and 
moving average components (Engle, 2001).
There is a burgeoning interest in harnessing neural 
networks for time series modeling and forecasting. 
Neural networks have emerged as a dominant trend in 
machine learning when tackling these tasks. They are 
nonlinear, nonparametric statistical methods (Zhang et 
al., 1998). One of  the key advantages of  neural networks 
is their ability to make predictions without imposing 
strong assumptions about the underlying data. They 
offer flexible, goal-driven modeling, which makes them 
a compelling alternative to traditional time series models 
for addressing complex forecasting challenges. Empirical 
evidence often supports the superiority of  neural network 
models in terms of  forecasting performance compared 
to conventional methods (Hill et al., 1996). However, it’s 
worth noting that the construction of  neural network 
models may not always follow a systematic procedure 
(Tealab, 2018). As a result, a significant area for future 
research lies in formulating new approaches to designing 
neural network models that can provide robust and 
reliable solutions to complex forecasting problems.
The primary objective of  this study was to apply three 
distinct models-ARIMA, Nonlinear Autoregressive 
Neural Network (NARNN), and Hybrid ARIMA-
NARNN (HYBRID)-to model and forecast the long-term 
records of  global average absolute sea level change from 
1880 to 2014. The NARNN and HYBRID models were 
employed in this study due to their notable advantages, 
including faster convergence and superior performance 
when compared to conventional neural network models 
(Adamowski et al., 2012). In this study, both the NARNN 
and HYBRID models underwent training utilizing three 
different training algorithms: Levenberg–Marquardt 

(LM), Bayesian Regularization (BR), and Scaled Conjugate 
Gradient (SCG). This innovative experiment can be 
regarded as a pilot study that explores the application 
of  NARNN and HYBRID models for assessing global 
average absolute sea level change. The findings of  this 
study have the potential to bridge a significant gap in time 
series forecasting by integrating the strengths of  both 
statistical and machine learning methods. The remainder 
of  the paper is organized into the following sections: 
Section 2: Introduces the time series data. Section 3: 
Describes the ARIMA, NARNN, HYBRID models, 
and the training algorithms used in this study. Section 
4: Presents and analyzes the empirical results. Section 5: 
Concludes the study.

MATERIALS AND METHODS
Data
The data used in this study is publicly accessible through 
the US Environmental Protection Agency (EPA) website at 
https://www.epa.gov/climate-indicators/climate-change-
indicators-sea-level, utilizing information sourced from 
the Australia’s Commonwealth Scientific and Industrial 
Research Organization (CSIRO) in 2015, available at 
https://www.cmar.csiro.au/sealevel/sl_data_cmar.html. 
For the purpose of  accurate analysis, this study combined 
two sets of  adjusted sea level data: CSIRO data covering 
the period from 1880 to 1992 and NOAA data spanning 
from 1993 to 2014. The resulting dataset represents global 
average absolute sea level change from 1880 to 2014, as 
depicted in Figure 1. The mean global average absolute sea 
level change in this dataset was measured at 3.6408 mm, 
with a standard deviation of  2.4297 mm. Notable statistics 
within this dataset include a minimum sea level change of  
-0.4409 mm in 1882, a maximum of  8.6637 mm in 2014, 
and a median of  3.3740 mm in 1947.
The data contains “cumulative changes in sea level for 
the world’s oceans since 1880, based on a combination of  
long-term tide gauge measurements and recent satellite 
measurements. It shows average absolute sea level change, 
which refers to the height of  the ocean surface, regardless 

Figure 1: Time series plot of  global average absolute sea level change, 1880 - 2014 (R Output)
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of  whether nearby land is rising or falling. Satellite data 
are based solely on measured sea level, while the long-
term tide gauge data include a small correction factor 
because the size and shape of  the oceans are changing 
slowly over time. (On average, the ocean floor has been 
gradually sinking since the last Ice Age peak, 20,000 years 
ago.)” (Quoted from https://datahub.io/core/sea-level-
rise#readme).

METHODOLOGY
The ARIMA Model
Time series data involves the sequential collection of  
information over time. In a univariate time series, it 
comprises a series of  individual (scalar) observations 
recorded at specific time points, denoted as “t.” This 
sequence of  random variables is represented as {yt: t = 
1, 2, ⋯, T}, where “yt” belongs to the real numbers (yt ∈ 
R), and “t” in “T” denotes the time index when each data 
point was observed. This collection of  random variables 
constitutes a stochastic process. Stochastic processes 
are frequently employed in modeling time series data to 
determine the underlying parameters of  the time series. 
Once these parameters are established, the stochastic 
process serves as a model that can be utilized to forecast 
future values of  the time series.
The ARIMA model is a statistical analysis tool used for 
modeling and forecasting time series data with the aim of  
predicting future trends. Each component of  the ARIMA 
model-namely, the autoregressive (AR) component, the 
differencing (I) component, and the moving average (MA) 
component-serves a distinct purpose. These components 
collectively work to enhance the model’s accuracy in 
predicting future data points within the time series 
(Montgomery et al., 2008). Statistically, ARIMA(p,d,q) 
model can be expressed as:
yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et + θ1et-1 + θ2et-2 + ⋯ 
+ θqet-q

		              (1)

characteristics, such as the mean and variance, remain 
constant over time. Consequently, when applying the 
Box-Jenkins methodology, it initially assumes the time 
series to be in a non-stationary state. To address this, 
differencing can be employed as a technique to transform 
the data and make it stationary. Practically, visual plots 
and summary statistics play a crucial role in identifying 
trends and autoregressive elements within the time series. 
This information helps determine the appropriate degree 
of  differencing and the size of  the lag required for model 
identification.
To determine suitable parameters for a time series model, 
one commonly utilized approach involves employing 
information criteria such as Akaike’s Information 
Criterion (AIC) or the Bayesian Information Criterion 
(BIC). These criteria help in selecting the appropriate 
orders for an ARIMA model by minimizing their 
respective values. In the diagnostic checking phase, 
various tools can be employed to assess the model’s 
performance. These include visual inspection of  residual 
error plots and conducting statistical tests on the residuals. 
These diagnostic checks serve several purposes, such as 
evaluating how well the chosen model fits the time series 
data and identifying areas where model improvement 
may be necessary. This step is essential for ensuring the 
model’s reliability and accuracy in forecasting.

The NARNN Model
The concept underlying the AR process is to explain 
the current value of  the time series, denoted as yt, by 
a function of  the previous p values, (yt-1, yt-2, ⋯, yt-p). 
Consequently, the autoregressive process of  order p, 
often represented as AR(p), is defined by the following 
equation:
yt = ϕ1yt-1 + ϕ2yt-2 + ⋯ + ϕpyt-p + et = ∑i=1 p ϕiyt-i + et   (2)
In this equation, ϕ represents a vector of  model 
coefficients for the autoregressive process, denoted as ϕ 
= (ϕ1, ϕ2, ⋯, ϕp), and et represents white noise with the 
property that et follows a normal distribution with mean 
0 and variance σ2, denoted as et ~ N(0, σ2) (Montgomery 
et al., 2008)
The NARNN represents a natural extension of  the 
traditional linear AR(p) process. An NARNN of  order p 
can be expressed as follows:
yt = Φ(yt-1, yt-2, ⋯, yt-p, w) + ɛt		              (3)
In this equation, Φ(∙) is an unspecified function that is 
determined by the structure and connection weights 
of  the neural network. The vector w encompasses all 
parameters, including the weights of  the network. Lastly, 
ɛt represents the error term. Essentially, the NARNN 
conducts a nonlinear mapping from past observations (yt-

1, yt-2, ⋯, yt-p) to predict future values, yt. This concept 
aligns with the idea of  a nonlinear autoregressive model, 
as introduced by Zhang in 2003.
In the context of  time series data, lagged values of  the 
time series can be employed as inputs to a neural network, 
resulting in what is commonly referred to as the NARNN 
model. Mathematically, the NARNN model (Benrhmach 
et al., 2020) can be represented by the following equation:

where p = the order of  the autoregressive process (the 
number of  lagged terms), d = the number of  differences 
required to make the time series stationary, q = the order of  
the moving average process (the number of  lagged terms), 
ϕ = (ϕ1, ϕ2, ⋯, ϕp) is the vector of  model coefficients for 
the autoregressive process, θ = (θ1, θ2, ⋯, θq) is the vector 
of  model coefficients for the moving average process, and 
et = the residual error (i.e., white noise).
In the realm of  time series forecasting, the Box-Jenkins 
methodology (Box & Jenkins, 1970) represents a 
systematic approach used for the identification, estimation, 
verification, and prediction of  ARIMA models. This 
methodology relies on analyzing the autocorrelation 
function (ACF) and partial autocorrelation function 
(PACF) to assess the stationary of  the univariate time 
series and determine the appropriate lag lengths (Box et 
al., 2016).
In time series analysis, a common assumption is that 
the time series is stationary, implying that the statistical 
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 	      (4) Training Algorithms
The NARNN and HYBRID models commonly employ 
various learning algorithms, with the most frequent ones 
being the Levenberg-Marquardt, Bayesian Regularization, 
and Scaled Conjugate Gradient training algorithms. 
Training in these models involves the crucial process 
of  finding the optimal network weights and bias points 
for the multilayer feedforward neural network. This 
optimization is achieved by defining a total error function, 
which quantifies the disparity between the network’s 
output and the desired target values. The objective of  the 
training process is to minimize this error function with 
respect to the network’s weights and bias parameters. 
This iterative optimization process is what enables the 
neural network to learn and improve its ability to make 
accurate predictions or classifications.

The LM Algorithm
The LM algorithm, initially introduced by Levenberg in 
1944 and later rediscovered by Marquardt in 1963, is a 
widely employed iterative method for solving nonlinear 
minimization problems. Such problems commonly 
emerge in applications like least squared curve fitting. 
The LM algorithm combines aspects of  both gradient 
descent and the Gauss-Newton method. One of  its key 
advantages is that it operates without the need to explicitly 
compute the exact Hessian matrix. Instead, it relies on 
the gradient vector and the Jacobian matrix, enabling 
faster training while maintaining stable convergence, as 
highlighted in Gavin’s work in 2020.
The LM algorithm is a variant of  Newton’s method 
that is particularly effective for training neural networks, 
especially when the performance index is defined as the 
mean squared error. When the performance function, 
also known as the network error function, takes the form 
of  a sum of  squares, it becomes possible to approximate 
the Hessian matrix and compute the gradient as follows:
Hessian Matrix (H) is calculated as: 𝐻 = 𝐽T𝐽	            (10)
Gradient Vector (G) is calculated as: G = 𝐽T𝑒	            (11)
In these equations, J represents the Jacobian matrix, 
which contains the first-order derivatives of  the network 
errors with respect to the weights and biases, and e is a 
vector representing the network errors. Computation of  
the Jacobian matrix can be performed using a standard 
backpropagation technique, which is computationally less 
complex than directly calculating the Hessian matrix. The 
LM algorithm itself  can be computed using the flowing 
equation:
𝑥k+1 = 𝑥k – [𝐽T𝐽 + 𝜇𝐼]-1 𝐽T𝑒		            (12)
In this equation, 𝑥k represents the current connection 
weights, 𝑥k+1 represents the next connection weights, I is 
the identity matrix, and μ is a scalar referred to as the 
combination coefficient. The LM algorithm exhibits an 
important feature: when μ is increased, it approaches the 
behavior of  the steepest descent algorithm with a small 
learning rate, while decreasing μ towards zero makes the 
algorithm behave like the Gauss-Newton method, as 

where d is the number of  input units, k is the number 
of  hidden units, a0 is the constant corresponding to the 
output unit, b0j is the constant corresponding to the 
hidden unit j, wj is the weight of  the connection between 
the hidden unit j and the output unit, wij is the parameter 
corresponding to the weight of  the connection between 
the input unit i and the hidden unit j, and Φ(∙) is a 
nonlinear activation function, so-called this the transfer 
(activation) function. The logistic function (i.e., sigmoid) 
is commonly used as the hidden layer transfer function, 
that is, Φ(y) = 1 / (1 + exp(-y)). The NARNN model 
essentially captures complex nonlinear relationships by 
using lagged values as inputs and applying the specified 
mathematical formulation for forecasting the current 
value of  the time series.

The HYBRID Model
The ARIMA and NARNN models excel in modeling 
linear and nonlinear aspects of  time series data, 
respectively. However, when a time series exhibits a 
combination of  both linear and nonlinear characteristics, a 
HYBRID model, which merges the strengths of  ARIMA 
and NARNN, can be a superior choice for accurate 
modeling. This HYBRID approach assumes the presence 
of  an unknown function that represents the relationship 
between the linear and nonlinear components within the 
time series. This relationship can be depicted as follows:
yt = f(Lt, Nt)				                (5)
where linear component is represented by Lt, and 
nonlinear component is shown by Nt. Assuming that the 
linear and nonlinear components in the time series interact 
through simple additive relationships, as suggested by 
Zhang (2003), the time series can be conceptualized as a 
composite of  both linear and nonlinear components, as 
articulated below:
yt = (Lt, Nt)				                (6)
Initially, the linear component of  the time series is 
addressed by modeling it using the ARIMA model. 
Subsequently, the residuals obtained from the SARIMA 
(seasonal ARIMA) model capture the remaining 
nonlinear relationship within the data. This nonlinear 
component can be extracted by calculating the differences 
between the observed values and the predicted values, as 
demonstrated below:

				                 (7)
where et is the residual of  the linear model at time t, and  
t is the predicted value for time t. To find the nonlinear 
relationship, residuals can be modelled by the NARNN 
model in this study as follows: 

		               (8)

where f  is the transformation function modelled by the 
NARNN model, and ɛt is the random error. The forecast 
from the ARIMA and NARNN models are combined to 
obtain the forecast of  the time series ŷt which is denoted 
by

				                (9)
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discussed by Hagan in 2014. This flexibility allows the LM 
algorithm to adapt its learning behavior during training.

The BR Algorithm
The BR algorithm, introduced by MacKay (1992), 
automatically determines the optimal performance 
function to achieve excellent generalization using a 
Bayesian inference approach. This algorithm is founded 
on the probabilistic interpretation of  network parameters. 
Bayesian optimization of  regularization parameters 
relies on calculating the Hessian matrix at the minimum 
point. Consequently, the BR algorithm incorporates a 
probability distribution of  network weights, and the 
network architecture can be regarded as a probabilistic 
framework (Sariev & Germano, 2020).
Similar to the LM algorithm, the BR algorithm is employed 
for optimizing weights and biases while minimizing the 
sum of  squared errors. It introduces network weights 
into the training objective function, denoted as F(W) as 
follows:
F(W) = αEW + βED			              (13)
Here, ED represents the sum of  network errors, and EW 
is the sum of  squared network weights. The parameters α 
and β are the objective function parameters, and their values 
are determined using Bayes’ theorem. Furthermore, the 
Gaussian distribution is utilized to model both the network 
weights and training sets. These parameters are updated 
iteratively until convergence is achieved (Yue et al., 2011).
In order to discover the optimal weight space, the 
objective function must be minimized, which is equivalent 
to maximizing the posterior probability function, defined 
as follows:
𝑃(x|𝐷, 𝛼, 𝛽, 𝑀) = 𝑃(𝐷|x, 𝛽, 𝑀) 𝑃(x|𝛼, 𝑀) / 𝑃(𝐷|𝛼, 𝛽, 
𝑀)					               (14)
In this equation, x represents the vector containing all 
the weights and biases in the network, 𝐷 denotes the 
training data set, and 𝛼 and 𝛽 are parameters associated 
with the density functions 𝑃(𝐷|x, β, 𝑀) and 𝑃(x|α, 𝑀), 
respectively. 𝑀 represents the selected model, which 
corresponds to the chosen architecture of  the network 
(Hagan, 2014).
As a consequence of  this process, the algorithm identifies 
optimal values for 𝛼 and 𝛽 within a given weight space. 
Subsequently, the algorithm transitions into the LM 
phase, involving Hessian matrix calculations to adjust 
the weight space and minimize the objective function. 
If  convergence is not achieved, the algorithm estimates 
new values for 𝛼 and 𝛽, and the entire procedure repeats 
iteratively until convergence is reached (Yue et al., 2011).

The SCG Algorithm
The SCG algorithm, developed by Møller (1993), is 
grounded in the Conjugate Gradient Method. However, 
what sets this algorithm apart is its omission of  a line 
search at each iteration. In contrast to many standard 
backward propagation algorithms, the SCG algorithm 
is fully automated, eliminating the need for critical 
user-specific parameters and avoiding time-consuming 

line searches. By incorporating the model trust region 
approach from the LM algorithm with the Conjugate 
Gradient method, the SCG algorithm can be expressed 
as (Møller, 1993):
𝑠k = [𝐸`(wk + σkpk) - 𝐸`(wk) / σk ] + λkpk	           (15)
Here, 𝑠 represents the Hessian matrix approximation, 𝐸 
is the total error function, and 𝐸` is the gradient of  𝐸. 
Scaling factors 𝜆k and 𝜎k are introduced to approximate 
the Hessian matrix and are initialized by the user at the 
start of  the algorithm, subject to the constraints 0 < 
𝜆k < 10-6 and 0 < 𝜎k < 10-4. In the SCG algorithm, the 
calculation of  factor “𝛽k” and the direction of  the new 
search are defined as follows (Møller, 1993):
βk = (|gk+1|

2 – gk +1T gk) / gkT gk		             (16)
pk+1 = -gk+1 + βk pk		   	            (17)
One notable advantage of  this algorithm is the ability 
to independently update the design parameters at each 
iteration, eliminating the need for user intervention. This 
stands as a significant advantage when compared to line 
search-based algorithms.

RESULTS AND DISCUSSION
The ARIMA Model
To find a solution, the function “auto.arima()” was 
employed from the “forecast” package in R version 4.3.1 
for Windows. This function was used to identify both the 
structure of  the time series (whether it’s stationary or not) 
and its type (whether it’s seasonal or not). Additionally, it 
automatically sets the model’s parameters by considering 
the AIC, AICc, or BIC values generated to determine 
the best-fit ARIMA model. Based on this approach, the 
ARIMA(0,1,2) model was selected for further forecasting 
processes, and the parameters of  the ARIMA(0,1,2) 
model are presented in Table 1.

Table 1: Parameters of  the ARIMA(0,1,2) with drift model
Parameter Estimate Standard Error
Constant 0.0644 0.0080
Difference 1
MA Lag 1 -0.3806 0.0840
MA Lag 2 -0.1598 0.0823
Sigma2 estimated as 0.0402, Log Likelihood = 26.57
AIC = -45.13, AICc = -44.82, BIC = -33.54
Training Set Error Measures:
RMSE = 0.1975106, MSE = 0.0390140, MAE = 0.1525891

Source: Own work

In this case, the Ljung-Box Q-test (Ljung and Box, 1978) 
was applied, yielding a test statistic of  Q = 2.6565 with 
7 degrees of  freedom. The p-value associated with the 
test was 0.9149, taking into account the model degrees of  
freedom (3) and total lags used (10). These results indicate 
that the residuals are indeed random, signifying that the 
model provides a suitable fit for the time series. The 
combination of  these findings, along with the Ljung-Box 
Q-test statistic, suggests that the ARIMA(0,1,2) model with 
drift effectively captures the dynamics of  this time series.
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The NARNN Model
In MATLAB, the NARNN model, applied for time series 
prediction, utilizes past values of  a univariate time series 
and can be expressed as follows:
y(t) = Φ(y(t-1), y(t-2), ⋯, y(t-d)) + e(t)	            (18)
In this equation, y(t) represents the time series value at 
time t, d is the time delay, and e(t) stands for the error 
in approximating the time series at time t. This formula 
illustrates how the NARNN model predicts the future 
value of  a time series, y(t), based on its past values, (y(t-
1), y(t-2), ⋯, y(t-d)). The function Φ(∙) represents an 
unknown nonlinear function, and training the neural 
network aims to approximate this function by optimizing 
the network weights and neuron biases. The objective 
is to minimize the sum of  squared differences between 
observed values (yi) and predicted values (ŷi), often 
quantified as the Mean Squared Error (MSE) given by:
MSE = 	 			             (19)

six iterations when the validation error reached 0.0204, 
with a gradient of  0.00151 and a Mu value of  0.001 at 
epoch 13. In terms of  processing time, the LM algorithm 
completed training in 00:00:00. Furthermore, the error 
analysis revealed that the NARNN model, configured 
with 7 neurons in the hidden layer and a time delay of  7, 
yielded the best performance, with a mean squared error 
(MSE) of  0.0227 when trained using the LM algorithm.

The HYBRID Model
In MATLAB, the HYBRID model applied to time series 
prediction using its past residuals from the SARIMA 
model can be expressed as follows:
e(t) = Φ(e(t-1), e(t-2), ⋯, e(t-d)) + ɛ(t)	            (20)
where e(t) is the residual of  the time series at time t, d is 
the time delay, and ɛ(t) is the error term. This equation 
describes how the HYBRID model is used to predict 
the future residual of  a time series, e(t), using the past 
residuals of  the time series, (e(t-1), e(t-2), ⋯, e(t-d)).
In a similar vein, devising the optimal architecture for the 
HYBRID model entails determining key factors such as 
time delays, the number of  hidden neurons, and selecting 
an efficient training algorithm. In this analytical study, the 
time series dataset was divided into three segments: 70% 
for training, 15% for validation, and 15% for testing. This 
partitioning resulted in a random allocation of  135 data 
samples, with 90 allocated for training, 19 for validation, 
and 19 for testing.
Upon conducting error analysis, it was found that the 
HYBRID model, configured with 6 neurons in the 
hidden layer and a time delay of  7, delivered the most 
favorable performance, achieving a MSE of  0.0129 when 
trained using the LM algorithm (as detailed in Table 2). 
Furthermore, the error analysis revealed that the NARNN 
model, configured with 7 neurons in the hidden layer and 
a time delay of  7, yielded the best performance, with a 

As such, the prediction performance of  the models is 
assessed using their MSE (Beale et al., 2019).
In this study, the extracted features were trained using 
three different training algorithms: LM, BR, and SCG. 
These algorithms were implemented in the MATLAB 
(2022a) Neural Network Toolbox to model a time series 
dataset consisting of  135 timesteps, representing global 
average absolute sea level change from 1880 to 2014. For 
the purpose of  this analysis, the time series dataset was 
divided into three segments: 70% for training, 15% for 
validation, and 15% for testing. Specifically, the 135 data 
samples were randomly split into 90 data samples for 
training, 19 for validation, and 19 for testing.
The training process automatically ceased when no further 
improvement in generalization was observed, as indicated 
by an increase in the mean square error of  the validation 
samples (Beale et al., 2019). The results showed that the 
training progress using the LM algorithm stopped after 

Table 2: HYBRID model selection using the LM, BR, SCG algorithms
Layer Size Time Delay LM BR SCG

MSE MSE MSE
6 5 0.0288 0.0331 0.0303

6 0.0228 0.0352 0.0360
7 0.0129 0.0351 0.0338
8 0.0367 0.0330 0.0321
9 0.0274 0.0322 0.0338

7 5 0.0288 0.0363 0.0408
6 0.0282 0.0298 0.0303
7 0.0344 0.0358 0.0324
8 0.0207 0.0325 0.0300
9 0.0239 0.0355 0.0326

8 5 0.0186 0.0346 0.0278
6 0.0184 0.0329 0.0333
7 0.0233 0.0347 0.0284
8 0.02589 0.0347 0.0296
9 0.0323 0.0323 0.0358
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9 5 0.0346 0.0337 0.0353
6 0.0322 0.0325 0.0345
7 0.0247 0.0355 0.0304
8 0.0248 0.0333 0.0340
9 0.0167 0.0346 0.0334

Source: Own work

MSE of  0.0227 when trained using the LM algorithm.
Simultaneously, while utilizing the LM algorithm for 
training the HYBRID model, the training process halted 
when the validation error exhibited an increase over six 
consecutive iterations. This termination was observed 

with performance metrics of  Performance = 0.0958, 
Gradient = 0.0056, and Mu = 0.0001, which occurred at 
epoch 18. Notably, in terms of  processing time, the LM 
algorithm completed its training phase within a negligible 
duration of  00:00:00, as outlined in Table 3.

Table 3: HYBRID training output
Unit Initial Value Stopped Value Target Value
Epoch 0 18 1000
Elapsed Time --- 00:00:00 ---
Performance 0.293 0.0958 0
Gradient 128 0.0056 1e-07
Mu 0.001 0.0001 1e+10
Validation Checks 0 6 6

(MATLAB Output)

HYBRID Best Performance
The performance plot serves as an informative tool, 
depicting the relationship between the training, validation, 
and testing phases in forecasting global mean absolute sea 
level change, as measured by the MSE against the number 
of  epochs. The evaluation of  performance involved 
computing the MSE and epochs upon the completion 
of  training. This graphical representation is invaluable 
for diagnostic purposes, as it allows for the observation 
of  the progress of  training by plotting the training, 

validation, and testing errors. The plot clearly indicates 
the point at which training ceased due to an increase in 
the validation error, as circled in the epoch.
As depicted in Figure 2, the HYBRID model achieved 
its best performance during the validation phase, 
yielding an MSE of  0.047631 at epoch 12. The results 
further demonstrate the model’s robust performance, 
with the validation and testing errors exhibiting similar 
characteristics. This suggests that significant overfitting is 
unlikely to have occurred.

Figure 2: Performance plot of  the HYBRID model (MATLAB Output)

HYBRID Neural Network Error Histogram
The error histogram serves as a valuable tool for 
identifying outliers within the dataset, which are data 
points exhibiting a considerably worse fit compared to 

the majority of  the data. In Figure 3, the error histograms 
illustrate this phenomenon, with blue bars representing 
the training data, green bars representing the validation 
data, and red bars representing the testing data.
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The results from the histograms revealed the presence 
of  a few testing and validation points that fell outside 
the expected range. If  these outliers are indeed valid data 
points but exhibit dissimilarity to the rest of  the dataset, 
it may indicate that the neural network is extrapolating 
to accommodate these points. In such cases, it becomes 
imperative to consider incorporating more data points 
similar to these outliers during the training analysis. 
Additionally, retraining the network may be necessary to 
improve its performance on these atypical data points.

HYBRID Time-Series Response
Figure 4 presents the dynamic network time-series 
response plots for the HYBRID model, illustrating that 
the model’s outputs are evenly distributed on both sides 
of  the response curve. Furthermore, the errors versus 
time remained consistently small throughout the training, 
validation, and testing phases. These findings provide 
strong evidence that the model successfully predicted the 
time series across the simulation period, demonstrating 
its efficiency and reliability.

Figure 3: Error histogram of  the HYBRID model (MATLAB Output)

Figure 4: Network time-series response of  the HYBRID model (MATLAB Output)

HYBRID Error Autocorrelation
The error autocorrelation function provides insight into 
how prediction errors are temporally related. In an ideal 
prediction model, only one nonzero value should appear 
in the autocorrelation function, precisely at zero lag 
(corresponding to the MSE). This scenario implies that 
the prediction errors are entirely uncorrelated, resembling 
white noise. However, if  notable correlations exist among 
prediction errors, it may be possible to enhance the 
prediction model, perhaps by increasing the number of  
delays in the tapped delay lines.

In the case of  the HYBRID model, most of  the 
correlations, except for the one at zero lag, generally fell 
within the 95% confidence limits around zero, indicating 
that the model’s performance was satisfactory (as depicted 
in Figure 5). However, isolated exceptions may suggest 
opportunities for improvement, either through retraining 
the network or by augmenting the number of  neurons in 
the hidden layer.
For more precise results, retraining the network can 
be considered, as it would modify the initial weights 
and biases, potentially leading to an improved network 
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configuration. This approach can be particularly valuable 
when striving for even greater accuracy in predictions.

CONCLUSIONS
This study aimed to identify the most suitable model for 
analyzing the time series data of  global average absolute 
sea level change spanning from 1880 to 2014. In this 
study, the suitable time series model was determined to be 
ARIMA(0,1,2) with a drift component, as it exhibited the 
lowest AIC values among the various models considered. 
Notably, this ARIMA(0,1,2) model with a drift component 
provided compelling evidence that future global average 
absolute sea level changes will follow an increasing 
trend over time. Additionally, this study evaluated the 
NARNN model, featuring 7 neurons in the hidden 
layer and 7 time delays, as the optimal neural network 
structure. This evaluation employed the LM algorithm, 
which is advantageous for its ability to expedite training 
without the need for exact Hessian matrix computations, 
ultimately ensuring stable convergence (Gavin, 2020).
Empirically, ARIMA and NARNN models have 
demonstrated their proficiency in modeling linear and 
nonlinear time series data, respectively. However, opting 
for a HYBRID model, which combines the strengths of  
both ARIMA and NARNN, offers a compelling advantage. 
This HYBRID approach seamlessly integrates linear and 
nonlinear modeling capabilities, making it superior choice 
for accurately modeling complex time series data. The 
comparative analysis unveiled that the HYBRID model, 
featuring 6 neurons in the hidden layer and 7 time delays, 
outperformed both the NARNN model, with 7 neurons 
in the hidden layer and 7 time delays (MSE = 0.0227), 
and the ARIMA(0,1,2) model with a drift component 
(MSE = 0.0390). The HYBRID model achieved the 
highest accuracy with a MSE of  0.0129, suggesting its 
superior predictive capability for global average absolute 
sea level change. According to the findings of  this study, 
the HYBRID model not only enriches the information 

available but also holds significant importance for 
decision-making processes concerning the future impacts 
of  global sea level rise.
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